These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33419203)

  • 1. Fabrication and Characterization of Double- and Single-Clamped CuO Nanowire Based Nanoelectromechanical Switches.
    Jasulaneca L; Livshits AI; Meija R; Kosmaca J; Sondors R; Ramma MM; Jevdokimovs D; Prikulis J; Erts D
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33419203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance assisted jump-in voltage reduction for electrostatically actuated nanobeam-based gateless NEM switches.
    Meija R; Livshits AI; Kosmaca J; Jasulaneca L; Andzane J; Biswas S; Holmes JD; Erts D
    Nanotechnology; 2019 Sep; 30(38):385203. PubMed ID: 31216518
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches - materials solutions and operational conditions.
    Jasulaneca L; Kosmaca J; Meija R; Andzane J; Erts D
    Beilstein J Nanotechnol; 2018; 9():271-300. PubMed ID: 29441272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunneling Nanoelectromechanical Switches Based on Compressible Molecular Thin Films.
    Niroui F; Wang AI; Sletten EM; Song Y; Kong J; Yablonovitch E; Swager TM; Lang JH; Bulović V
    ACS Nano; 2015 Aug; 9(8):7886-94. PubMed ID: 26244821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sub-1-volt nanoelectromechanical switching device.
    Lee JO; Song YH; Kim MW; Kang MH; Oh JS; Yang HH; Yoon JB
    Nat Nanotechnol; 2013 Jan; 8(1):36-40. PubMed ID: 23178336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encapsulation of NEM Memory Switches for Monolithic-Three-Dimensional (M3D) CMOS⁻NEM Hybrid Circuits.
    Jo HC; Choi WY
    Micromachines (Basel); 2018 Jun; 9(7):. PubMed ID: 30424250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Application of Chalcogenide Alloy Other than Storage Memory Field.
    Wang L; Gong S; Yang C; Wen J
    Recent Pat Nanotechnol; 2017; 11(1):75-80. PubMed ID: 27480669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-terminal nanoelectromechanical switch based on tungsten nitride--an amorphous metallic material.
    Mayet AM; Hussain AM; Hussain MM
    Nanotechnology; 2016 Jan; 27(3):035202. PubMed ID: 26636189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-terminal nanoelectromechanical bistable switches based on molybdenum-sulfur-iodine molecular wire bundles.
    Andzane J; Prikulis J; Dvorsek D; Mihailovic D; Erts D
    Nanotechnology; 2010 Mar; 21(12):125706. PubMed ID: 20203354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electromechanical carbon nanotube switches for high-frequency applications.
    Kaul AB; Wong EW; Epp L; Hunt BD
    Nano Lett; 2006 May; 6(5):942-7. PubMed ID: 16683830
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Platform for Fast Low-Voltage Nanoelectromechanical Switching.
    Han J; Nelson Z; Chua MR; Swager TM; Niroui F; Lang JH; Bulović V
    Nano Lett; 2021 Dec; 21(24):10244-10251. PubMed ID: 34874728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low voltage nanoelectromechanical switches based on silicon carbide nanowires.
    Feng XL; Matheny MH; Zorman CA; Mehregany M; Roukes ML
    Nano Lett; 2010 Aug; 10(8):2891-6. PubMed ID: 20698601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled fabrication of photoactive copper oxide-cobalt oxide nanowire heterostructures for efficient phenol photodegradation.
    Shi W; Chopra N
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5590-607. PubMed ID: 22985284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoarchitectonics for Wide Bandgap Semiconductor Nanowires: Toward the Next Generation of Nanoelectromechanical Systems for Environmental Monitoring.
    Pham TA; Qamar A; Dinh T; Masud MK; Rais-Zadeh M; Senesky DG; Yamauchi Y; Nguyen NT; Phan HP
    Adv Sci (Weinh); 2020 Nov; 7(21):2001294. PubMed ID: 33173726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrodynamic Force, Casimir Effect, and Stiction Mitigation in Silicon Carbide Nanoelectromechanical Switches.
    Yang R; Qian J; Feng PX
    Small; 2020 Dec; 16(51):e2005594. PubMed ID: 33236527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultra low power consumption for self-oscillating nanoelectromechanical systems constructed by contacting two nanowires.
    Barois T; Ayari A; Vincent P; Perisanu S; Poncharal P; Purcell ST
    Nano Lett; 2013 Apr; 13(4):1451-6. PubMed ID: 23528158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoelectromechanical contact switches.
    Loh OY; Espinosa HD
    Nat Nanotechnol; 2012 Apr; 7(5):283-95. PubMed ID: 22543427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Notched Anchor Design for Low Voltage Operation of Nanoelectromechanical (NEM) Memory Switches.
    Kang MH; Jo HC; Choi WY
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4198-4202. PubMed ID: 31968441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active Region Formation of Nanoelectromechanical (NEM) Devices for Complementary-Metal-Oxide-Semiconductor-NEM Co-Integration.
    Cha TM; Jo HC; Kwon HS; Choi WY
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6123-6127. PubMed ID: 31026920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time nanomechanical property modulation as a framework for tunable NEMS.
    Ali UE; Modi G; Agarwal R; Bhaskaran H
    Nat Commun; 2022 Mar; 13(1):1464. PubMed ID: 35304454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.