BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 33419225)

  • 1. Transcriptome Analysis and Identification of Lipid Genes in
    Chen GQ; Kim WN; Johnson K; Park ME; Lee KR; Kim HU
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33419225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of hydroxy fatty acid and triacylglycerol metabolism-related genes in lesquerella through seed transcriptome analysis.
    Kim HU; Chen GQ
    BMC Genomics; 2015 Mar; 16(1):230. PubMed ID: 25881190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining the bitter melon (momordica charantia l.) seed transcriptome by 454 analysis of non-normalized and normalized cDNA populations for conjugated fatty acid metabolism-related genes.
    Yang P; Li X; Shipp MJ; Shockey JM; Cahoon EB
    BMC Plant Biol; 2010 Nov; 10():250. PubMed ID: 21080948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fatty acid condensing enzyme from Physaria fendleri increases hydroxy fatty acid accumulation in transgenic oilseeds of Camelina sativa.
    Snapp AR; Kang J; Qi X; Lu C
    Planta; 2014 Sep; 240(3):599-610. PubMed ID: 25023632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of multiple lipid genes with modifications in expression and sequence associated with the evolution of hydroxy fatty acid accumulation in Physaria fendleri.
    Horn PJ; Liu J; Cocuron JC; McGlew K; Thrower NA; Larson M; Lu C; Alonso AP; Ohlrogge J
    Plant J; 2016 May; 86(4):322-48. PubMed ID: 26991237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of an oleate 12-desaturase from Physaria fendleri and identification of 5'UTR introns in divergent FAD2 family genes.
    Lozinsky S; Yang H; Forseille L; Cook GR; Ramirez-Erosa I; Smith MA
    Plant Physiol Biochem; 2014 Feb; 75():114-22. PubMed ID: 24429134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptome analysis and identification of genes associated with ω-3 fatty acid biosynthesis in Perilla frutescens (L.) var. frutescens.
    Kim HU; Lee KR; Shim D; Lee JH; Chen GQ; Hwang S
    BMC Genomics; 2016 Jun; 17():474. PubMed ID: 27342315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Camelina seed transcriptome: a tool for meal and oil improvement and translational research.
    Nguyen HT; Silva JE; Podicheti R; Macrander J; Yang W; Nazarenus TJ; Nam JW; Jaworski JG; Lu C; Scheffler BE; Mockaitis K; Cahoon EB
    Plant Biotechnol J; 2013 Aug; 11(6):759-69. PubMed ID: 23551501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of Seipin1 Increases Oil in Hydroxy Fatty Acid-Accumulating Seeds.
    Lunn D; Wallis JG; Browse J
    Plant Cell Physiol; 2018 Jan; 59(1):205-214. PubMed ID: 29149288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection for a Zinc-Finger Protein Contributes to Seed Oil Increase during Soybean Domestication.
    Li QT; Lu X; Song QX; Chen HW; Wei W; Tao JJ; Bian XH; Shen M; Ma B; Zhang WK; Bi YD; Li W; Lai YC; Lam SM; Shui GH; Chen SY; Zhang JS
    Plant Physiol; 2017 Apr; 173(4):2208-2224. PubMed ID: 28184009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-Length Transcriptome Survey and Expression Analysis of
    Deng Y; Zheng H; Yan Z; Liao D; Li C; Zhou J; Liao H
    Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30134624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptome analysis of the oil-rich tea plant, Camellia oleifera, reveals candidate genes related to lipid metabolism.
    Xia EH; Jiang JJ; Huang H; Zhang LP; Zhang HB; Gao LZ
    PLoS One; 2014; 9(8):e104150. PubMed ID: 25136805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Transcriptome Analysis Reveals an Efficient Mechanism of α-Linolenic Acid in Tree Peony Seeds.
    Zhang Q; Yu R; Sun D; Rahman MM; Xie L; Hu J; He L; Kilaru A; Niu L; Zhang Y
    Int J Mol Sci; 2018 Dec; 20(1):. PubMed ID: 30586917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of Castor LPAT2 Enhances Ricinoleic Acid Content at the sn-2 Position of Triacylglycerols in Lesquerella Seed.
    Chen GQ; van Erp H; Martin-Moreno J; Johnson K; Morales E; Browse J; Eastmond PJ; Lin JT
    Int J Mol Sci; 2016 Apr; 17(4):507. PubMed ID: 27058535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa.
    Na G; Mu X; Grabowski P; Schmutz J; Lu C
    Plant J; 2019 Apr; 98(2):346-358. PubMed ID: 30604453
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current progress towards the metabolic engineering of plant seed oil for hydroxy fatty acids production.
    Lee KR; Chen GQ; Kim HU
    Plant Cell Rep; 2015 Apr; 34(4):603-15. PubMed ID: 25577331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyploid genome of Camelina sativa revealed by isolation of fatty acid synthesis genes.
    Hutcheon C; Ditt RF; Beilstein M; Comai L; Schroeder J; Goldstein E; Shewmaker CK; Nguyen T; De Rocher J; Kiser J
    BMC Plant Biol; 2010 Oct; 10():233. PubMed ID: 20977772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo assembly of the peanut (Arachis hypogaea L.) seed transcriptome revealed candidate unigenes for oil accumulation pathways.
    Yin D; Wang Y; Zhang X; Li H; Lu X; Zhang J; Zhang W; Chen S
    PLoS One; 2013; 8(9):e73767. PubMed ID: 24040062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular and biochemical characterization of the OLE-1 high-oleic castor seed (Ricinus communis L.) mutant.
    Venegas-Calerón M; Sánchez R; Salas JJ; Garcés R; Martínez-Force E
    Planta; 2016 Jul; 244(1):245-58. PubMed ID: 27056057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Specialized Diacylglycerol Acyltransferase Contributes to the Extreme Medium-Chain Fatty Acid Content of
    Iskandarov U; Silva JE; Kim HJ; Andersson M; Cahoon RE; Mockaitis K; Cahoon EB
    Plant Physiol; 2017 May; 174(1):97-109. PubMed ID: 28325847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.