BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 33419278)

  • 1. Evaluation and Application of a Customizable Wireless Platform: A Body Sensor Network for Unobtrusive Gait Analysis in Everyday Life.
    Lueken M; Mueller L; Decker MG; Bollheimer C; Leonhardt S; Ngo C
    Sensors (Basel); 2020 Dec; 20(24):. PubMed ID: 33419278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wearable Sensor-Based Real-Time Gait Detection: A Systematic Review.
    Prasanth H; Caban M; Keller U; Courtine G; Ijspeert A; Vallery H; von Zitzewitz J
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Systematic Approach to the Design and Characterization of A Smart Insole for Detecting Vertical Ground Reaction Force (vGRF) in Gait Analysis.
    Tahir AM; Chowdhury MEH; Khandakar A; Al-Hamouz S; Abdalla M; Awadallah S; Reaz MBI; Al-Emadi N
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of Stride Time Variability in Unobtrusive Long-Term Monitoring Using Inertial Measurement Sensors.
    Lueken M; Kate WT; Valenti G; Batista JP; Bollheimer C; Leonhardt S; Ngo C
    IEEE J Biomed Health Inform; 2020 Jul; 24(7):1879-1886. PubMed ID: 32386168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Functional Soft Strain Sensors for Wearable Physiological Monitoring.
    Hughes J; Iida F
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30413011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible sensor matrix film-based wearable plantar pressure force measurement and analysis system.
    Zhao S; Liu R; Fei C; Zia AW; Jing L
    PLoS One; 2020; 15(8):e0237090. PubMed ID: 32764796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of ground reaction forces and joint moments on the basis on plantar pressure insoles and wearable sensors for joint angle measurement.
    Ostaszewski M; Pauk J
    Technol Health Care; 2018; 26(S2):605-612. PubMed ID: 29843283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gait Pattern Analysis: Integration of a Highly Sensitive Flexible Pressure Sensor on a Wireless Instrumented Insole.
    Das PS; Skaf D; Rose L; Motaghedi F; Carmichael TB; Rondeau-Gagné S; Ahamed MJ
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38733050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning.
    Kiprijanovska I; Gjoreski H; Gams M
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32961750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PI-Sole: A Low-Cost Solution for Gait Monitoring Using Off-The-Shelf Piezoelectric Sensors and IMU.
    Chandel V; Singhal S; Sharma V; Ahmed N; Ghose A
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3290-3296. PubMed ID: 31946586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The implementation of inertial sensors for the assessment of temporal parameters of gait in the knee arthroplasty population.
    De Vroey H; Staes F; Weygers I; Vereecke E; Vanrenterghem J; Deklerck J; Van Damme G; Hallez H; Claeys K
    Clin Biomech (Bristol, Avon); 2018 May; 54():22-27. PubMed ID: 29533844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical Behavior in Older Persons during Daily Life: Insights from Instrumented Shoes.
    Moufawad El Achkar C; Lenoble-Hoskovec C; Paraschiv-Ionescu A; Major K; Büla C; Aminian K
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27527172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shoe-Integrated, Force Sensor Design for Continuous Body Weight Monitoring.
    Muzaffar S; Elfadel IAM
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32545528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy and precision of loadsol
    Seiberl W; Jensen E; Merker J; Leitel M; Schwirtz A
    Eur J Sport Sci; 2018 Sep; 18(8):1100-1109. PubMed ID: 29842825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A preliminary test of measurement of joint angles and stride length with wireless inertial sensors for wearable gait evaluation system.
    Watanabe T; Saito H; Koike E; Nitta K
    Comput Intell Neurosci; 2011; 2011():975193. PubMed ID: 21941531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine Learning Strategies for Low-Cost Insole-Based Prediction of Center of Gravity during Gait in Healthy Males.
    Moon J; Lee D; Jung H; Choi A; Mun JH
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A flexible wearable sensor for knee flexion assessment during gait.
    Papi E; Bo YN; McGregor AH
    Gait Posture; 2018 May; 62():480-483. PubMed ID: 29674288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimation of vertical walking ground reaction force in real-life environments using single IMU sensor.
    Shahabpoor E; Pavic A
    J Biomech; 2018 Oct; 79():181-190. PubMed ID: 30195851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-sensor calibration of low-cost magnetic, angular rate and gravity systems.
    Lüken M; Misgeld BJ; Rüschen D; Leonhardt S
    Sensors (Basel); 2015 Oct; 15(10):25919-36. PubMed ID: 26473873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ground Contact Time Estimating Wearable Sensor to Measure Spatio-Temporal Aspects of Gait.
    Bernhart S; Kranzinger S; Berger A; Peternell G
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.