BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 33419355)

  • 21. Evolving nanomaterials using enzyme-driven dynamic peptide libraries (eDPL).
    Das AK; Hirsth AR; Ulijn RV
    Faraday Discuss; 2009; 143():293-303; discussion 359-72. PubMed ID: 20334108
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field.
    Kelly CM; Northey T; Ryan K; Brooks BR; Kholkin AL; Rodriguez BJ; Buchete NV
    Biophys Chem; 2015 Jan; 196():16-24. PubMed ID: 25240398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of solvent on the self-assembly of dialanine and diphenylalanine peptides.
    Rissanou AN; Georgilis E; Kasotakis E; Mitraki A; Harmandaris V
    J Phys Chem B; 2013 Apr; 117(15):3962-75. PubMed ID: 23510047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-assembly of cyclo-diphenylalanine peptides in vacuum.
    Jeon J; Shell MS
    J Phys Chem B; 2014 Jun; 118(24):6644-52. PubMed ID: 24877752
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic and Thermodynamic Driving Factors in the Assembly of Phenylalanine-Based Modules.
    Zaguri D; Zimmermann MR; Meisl G; Levin A; Rencus-Lazar S; Knowles TPJ; Gazit E
    ACS Nano; 2021 Nov; 15(11):18305-18311. PubMed ID: 34694771
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-Assembled Peptide-Based Hydrogels as Scaffolds for Proliferation and Multi-Differentiation of Mesenchymal Stem Cells.
    Wang YL; Lin SP; Nelli SR; Zhan FK; Cheng H; Lai TS; Yeh MY; Lin HC; Hung SC
    Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27792283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Complementary π-π interactions induce multicomponent coassembly into functional fibrils.
    Ryan DM; Doran TM; Nilsson BL
    Langmuir; 2011 Sep; 27(17):11145-56. PubMed ID: 21815693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical properties of self-assembled Fmoc-diphenylalanine molecular gels.
    Dudukovic NA; Zukoski CF
    Langmuir; 2014 Apr; 30(15):4493-500. PubMed ID: 24684510
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformation Dependence of Diphenylalanine Self-Assembly Structures and Dynamics: Insights from Hybrid-Resolution Simulations.
    Xiong Q; Jiang Y; Cai X; Yang F; Li Z; Han W
    ACS Nano; 2019 Apr; 13(4):4455-4468. PubMed ID: 30869864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural Transformation of Coassembled Fmoc-Protected Aromatic Amino Acids to Nanoparticles.
    Wang T; Ménard-Moyon C; Bianco A
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10532-10544. PubMed ID: 38367060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. De novo design of self-assembly hydrogels based on Fmoc-diphenylalanine providing drug release.
    Li X; Zhang H; Liu L; Cao C; Wei P; Yi X; Zhou Y; Lv Q; Zhou D; Yi T
    J Mater Chem B; 2021 Oct; 9(41):8686-8693. PubMed ID: 34617098
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Self-assembly of tripeptides into γ-turn nanostructures.
    Ozawa Y; Sato H; Kayano Y; Yamaki N; Izato YI; Miyake A; Naito A; Kawamura I
    Phys Chem Chem Phys; 2019 Jun; 21(21):10879-10883. PubMed ID: 30968092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of Solvent Choice on the Self-Assembly Properties of a Diphenylalanine Amphiphile Stabilized by an Ion Pair.
    Mayans E; Ballano G; Sendros J; Font-Bardia M; Campos JL; Puiggalí J; Cativiela C; Alemán C
    Chemphyschem; 2017 Jul; 18(14):1888-1896. PubMed ID: 28374964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N-(9-Fluorenylmethoxycarbonyl)-L-Phenylalanine/nano-hydroxyapatite hybrid supramolecular hydrogels as drug delivery vehicles with antibacterial property and cytocompatibility.
    Li W; Hu X; Chen J; Wei Z; Song C; Huang R
    J Mater Sci Mater Med; 2020 Jul; 31(8):73. PubMed ID: 32729101
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synthesis, experimental and in silico studies of N-fluorenylmethoxycarbonyl-O-tert-butyl-N-methyltyrosine, coupled with CSD data: a survey of interactions in the crystal structures of Fmoc-amino acids.
    Bojarska J; Remko M; Madura ID; Kaczmarek K; Zabrocki J; Wolf WM
    Acta Crystallogr C Struct Chem; 2020 Apr; 76(Pt 4):328-345. PubMed ID: 32229714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Honeycomb self-assembled peptide scaffolds by the breath figure method.
    Du M; Zhu P; Yan X; Su Y; Song W; Li J
    Chemistry; 2011 Apr; 17(15):4238-45. PubMed ID: 21387428
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploiting Minimalistic Backbone Engineered γ-Phenylalanine for the Formation of Supramolecular Co-Polymer.
    Misra R; Tang Y; Chen Y; Chakraborty P; Netti F; Vijayakanth T; Shimon LJW; Wei G; Adler-Abramovich L
    Macromol Rapid Commun; 2022 Oct; 43(19):e2200223. PubMed ID: 35920234
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural Properties of Phenylalanine-Based Dimers Revealed Using IR Action Spectroscopy.
    Stroganova I; Bakels S; Rijs AM
    Molecules; 2022 Apr; 27(7):. PubMed ID: 35408770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Designed aromatic homo-dipeptides: formation of ordered nanostructures and potential nanotechnological applications.
    Reches M; Gazit E
    Phys Biol; 2006 Feb; 3(1):S10-9. PubMed ID: 16582461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.