These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 33419355)
81. Supramolecular tripeptide self-assembly initiated at the surface of coacervates by polyelectrolyte exchange. Criado-Gonzalez M; Wagner D; Iqbal MH; Ontani A; Carvalho A; Schmutz M; Schlenoff JB; Schaaf P; Jierry L; Boulmedais F J Colloid Interface Sci; 2021 Apr; 588():580-588. PubMed ID: 33450601 [TBL] [Abstract][Full Text] [Related]
82. Salt-induced Fmoc-tripeptide supramolecular hydrogels: a combined experimental and computational study of the self-assembly. Criado-Gonzalez M; Peñas MI; Barbault F; Müller AJ; Boulmedais F; Hernández R Nanoscale; 2024 May; 16(20):9887-9898. PubMed ID: 38683577 [TBL] [Abstract][Full Text] [Related]
83. Self-Assembly of Phenylalanine-Leucine, Leucine-Phenylalanine, and Cyclo(-leucine-phenylalanine) Dipeptides through Simulations and Experiments. Divanach P; Fanouraki E; Mitraki A; Harmandaris V; Rissanou AN J Phys Chem B; 2023 May; 127(19):4208-4219. PubMed ID: 37148280 [TBL] [Abstract][Full Text] [Related]
84. Fmoc-diphenylalanine as a suitable building block for the preparation of hybrid materials and their potential applications. Diaferia C; Morelli G; Accardo A J Mater Chem B; 2019 Sep; 7(34):5142-5155. PubMed ID: 31380554 [TBL] [Abstract][Full Text] [Related]
85. Multicomponent Hydrogel Matrices of Fmoc-FF and Cationic Peptides for Application in Tissue Engineering. Rosa E; Diaferia C; Gianolio E; Sibillano T; Gallo E; Smaldone G; Stornaiuolo M; Giannini C; Morelli G; Accardo A Macromol Biosci; 2022 Jul; 22(7):e2200128. PubMed ID: 35524744 [TBL] [Abstract][Full Text] [Related]
86. Nanoscale Assembly of Functional Peptides with Divergent Programming Elements. Garcia AM; Melchionna M; Bellotto O; Kralj S; Semeraro S; Parisi E; Iglesias D; D'Andrea P; De Zorzi R; Vargiu AV; Marchesan S ACS Nano; 2021 Feb; 15(2):3015-3025. PubMed ID: 33576622 [TBL] [Abstract][Full Text] [Related]
87. pH-Responsive Self-Assembly of Designer Aromatic Peptide Amphiphiles and Enzymatic Post-Modification of Assembled Structures. Wakabayashi R; Higuchi A; Obayashi H; Goto M; Kamiya N Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33801602 [TBL] [Abstract][Full Text] [Related]
88. Assessment of the MARTINI 3 Performance for Short Peptide Self-Assembly. Sasselli IR; Coluzza I J Chem Theory Comput; 2024 Jan; 20(1):224-238. PubMed ID: 38113378 [TBL] [Abstract][Full Text] [Related]
89. Self assembly of short aromatic peptides into amyloid fibrils and related nanostructures. Gazit E Prion; 2007; 1(1):32-5. PubMed ID: 19164892 [TBL] [Abstract][Full Text] [Related]
90. Comparison of the self-assembly and cytocompatibility of conjugates of Fmoc (9-fluorenylmethoxycarbonyl) with hydrophobic, aromatic, or charged amino acids. Castelletto V; de Mello L; da Silva ER; Seitsonen J; Hamley IW J Pept Sci; 2024 Jun; 30(6):e3571. PubMed ID: 38374800 [TBL] [Abstract][Full Text] [Related]
91. The role of Phe in the formation of well-ordered oligomers of amyloidogenic hexapeptide (NFGAIL) observed in molecular dynamics simulations with explicit solvent. Wu C; Lei H; Duan Y Biophys J; 2005 Apr; 88(4):2897-906. PubMed ID: 15653723 [TBL] [Abstract][Full Text] [Related]
92. Chirality-Dependent Copper-Diphenylalanine Assemblies with Tough Layered Structure and Enhanced Catalytic Performance. Zhang G; Liang Y; Wang Y; Li Q; Qi W; Zhang W; Su R; He Z ACS Nano; 2022 Apr; 16(4):6866-6877. PubMed ID: 35319863 [TBL] [Abstract][Full Text] [Related]
93. Role of aromatic interactions in amyloid formation by peptides derived from human Amylin. Tracz SM; Abedini A; Driscoll M; Raleigh DP Biochemistry; 2004 Dec; 43(50):15901-8. PubMed ID: 15595845 [TBL] [Abstract][Full Text] [Related]
94. Gelation of Fmoc-diphenylalanine is a first order phase transition. Dudukovic NA; Zukoski CF Soft Matter; 2015 Oct; 11(38):7663-73. PubMed ID: 26295906 [TBL] [Abstract][Full Text] [Related]
95. Histidine modulates amyloid-like assembly of peptide nanomaterials and confers enzyme-like activity. Yuan Y; Chen L; Kong L; Qiu L; Fu Z; Sun M; Liu Y; Cheng M; Ma S; Wang X; Zhao C; Jiang J; Zhang X; Wang L; Gao L Nat Commun; 2023 Sep; 14(1):5808. PubMed ID: 37726302 [TBL] [Abstract][Full Text] [Related]
96. Investigation and regulation of self-assembled well-ordered nano/microstructures via an aromatic α-amino acid. Moazeni M; Karimzadeh F; Kermanpur A Soft Matter; 2018 Jun; 14(24):4996-5007. PubMed ID: 29855647 [TBL] [Abstract][Full Text] [Related]
97. The effect of increasing hydrophobicity on the self-assembly of amphipathic beta-sheet peptides. Bowerman CJ; Ryan DM; Nissan DA; Nilsson BL Mol Biosyst; 2009 Sep; 5(9):1058-69. PubMed ID: 19668872 [TBL] [Abstract][Full Text] [Related]
98. Expanding the Nanoarchitectural Diversity Through Aromatic Di- and Tri-Peptide Coassembly: Nanostructures and Molecular Mechanisms. Guo C; Arnon ZA; Qi R; Zhang Q; Adler-Abramovich L; Gazit E; Wei G ACS Nano; 2016 Sep; 10(9):8316-24. PubMed ID: 27548765 [TBL] [Abstract][Full Text] [Related]
99. Tuning the self-assembly of the bioactive dipeptide L-carnosine by incorporation of a bulky aromatic substituent. Castelletto V; Cheng G; Greenland BW; Hamley IW; Harris PJ Langmuir; 2011 Mar; 27(6):2980-8. PubMed ID: 21338121 [TBL] [Abstract][Full Text] [Related]
100. Hybrid peptide-PNA monomers as building blocks for the fabrication of supramolecular aggregates. Cimmino L; Diaferia C; Rosa M; Morelli G; Rosa E; Accardo A J Pept Sci; 2024 Jul; 30(7):e3573. PubMed ID: 38471735 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]