BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 33419586)

  • 1. Intrinsically Conductive Microbial Nanowires for 'Green' Electronics with Novel Functions.
    Lovley DR; Yao J
    Trends Biotechnol; 2021 Sep; 39(9):940-952. PubMed ID: 33419586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein Nanowires: the Electrification of the Microbial World and Maybe Our Own.
    Lovley DR; Holmes DE
    J Bacteriol; 2020 Sep; 202(20):. PubMed ID: 32747429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial nanowires with genetically modified peptide ligands to sustainably fabricate electronic sensing devices.
    Lekbach Y; Ueki T; Liu X; Woodard T; Yao J; Lovley DR
    Biosens Bioelectron; 2023 Apr; 226():115147. PubMed ID: 36804664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bottom-Up Fabrication of Protein Nanowires via Controlled Self-Assembly of Recombinant
    Cosert KM; Castro-Forero A; Steidl RJ; Worden RM; Reguera G
    mBio; 2019 Dec; 10(6):. PubMed ID: 31822587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-sustained green neuromorphic interfaces.
    Fu T; Liu X; Fu S; Woodard T; Gao H; Lovley DR; Yao J
    Nat Commun; 2021 Jun; 12(1):3351. PubMed ID: 34099691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Archaellum of Methanospirillum hungatei Is Electrically Conductive.
    Walker DJF; Martz E; Holmes DE; Zhou Z; Nonnenmann SS; Lovley DR
    mBio; 2019 Apr; 10(2):. PubMed ID: 30992355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. e-Biologics: Fabrication of Sustainable Electronics with "Green" Biological Materials.
    Lovley DR
    mBio; 2017 Jun; 8(3):. PubMed ID: 28655820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conductive Composite Materials Fabricated from Microbially Produced Protein Nanowires.
    Sun YL; Tang HY; Ribbe A; Duzhko V; Woodard TL; Ward JE; Bai Y; Nevin KP; Nonnenmann SS; Russell T; Emrick T; Lovley DR
    Small; 2018 Nov; 14(44):e1802624. PubMed ID: 30260563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An
    Ueki T; Walker DJF; Woodard TL; Nevin KP; Nonnenmann SS; Lovley DR
    ACS Synth Biol; 2020 Mar; 9(3):647-654. PubMed ID: 32125829
    [No Abstract]   [Full Text] [Related]  

  • 10. Spatially resolved Hall effect measurement in a single semiconductor nanowire.
    Storm K; Halvardsson F; Heurlin M; Lindgren D; Gustafsson A; Wu PM; Monemar B; Samuelson L
    Nat Nanotechnol; 2012 Nov; 7(11):718-22. PubMed ID: 23103932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological templated synthesis of water-soluble conductive polymeric nanowires.
    Niu Z; Liu J; Lee LA; Bruckman MA; Zhao D; Koley G; Wang Q
    Nano Lett; 2007 Dec; 7(12):3729-33. PubMed ID: 18020388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoenhanced Patterning of Metal Nanowire Networks for Fabrication of Ultraflexible Transparent Devices.
    Song CH; Han CJ; Ju BK; Kim JW
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):480-9. PubMed ID: 26690092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk-Based Advanced Materials for Soft Electronics.
    Wang C; Xia K; Zhang Y; Kaplan DL
    Acc Chem Res; 2019 Oct; 52(10):2916-2927. PubMed ID: 31536330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Fabrication Method for Highly Stretchable Conductors with Silver Nanowires.
    Chang CW; Chen SP; Liao YC
    J Vis Exp; 2016 Jan; (107):e53623. PubMed ID: 26862843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin hetero-nanowire-based flexible electronics with tunable conductivity.
    Liu JW; Huang WR; Gong M; Zhang M; Wang JL; Zheng J; Yu SH
    Adv Mater; 2013 Nov; 25(41):5910-5. PubMed ID: 23913762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmed assembly of DNA-coated nanowire devices.
    Morrow TJ; Li M; Kim J; Mayer TS; Keating CD
    Science; 2009 Jan; 323(5912):352. PubMed ID: 19150837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays.
    Duay J; Gillette E; Liu R; Lee SB
    Phys Chem Chem Phys; 2012 Mar; 14(10):3329-37. PubMed ID: 22298230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvements in purification of silver nanowires by decantation and fabrication of flexible transparent electrodes. Application to capacitive touch sensors.
    Mayousse C; Celle C; Moreau E; Mainguet JF; Carella A; Simonato JP
    Nanotechnology; 2013 May; 24(21):215501. PubMed ID: 23619480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network.
    Lee P; Lee J; Lee H; Yeo J; Hong S; Nam KH; Lee D; Lee SS; Ko SH
    Adv Mater; 2012 Jul; 24(25):3326-32. PubMed ID: 22610599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial nanowires for bioenergy applications.
    Malvankar NS; Lovley DR
    Curr Opin Biotechnol; 2014 Jun; 27():88-95. PubMed ID: 24863901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.