These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Swimming patterns and dynamics of simulated Escherichia coli bacteria. Zonia L; Bray D J R Soc Interface; 2009 Nov; 6(40):1035-46. PubMed ID: 19324687 [TBL] [Abstract][Full Text] [Related]
4. E. coli superdiffusion and chemotaxis-search strategy, precision, and motility. Matthäus F; Jagodic M; Dobnikar J Biophys J; 2009 Aug; 97(4):946-57. PubMed ID: 19686641 [TBL] [Abstract][Full Text] [Related]
5. Persistence of direction increases the drift velocity of run and tumble chemotaxis. Locsei JT J Math Biol; 2007 Jul; 55(1):41-60. PubMed ID: 17354016 [TBL] [Abstract][Full Text] [Related]
6. Directional persistence and the optimality of run-and-tumble chemotaxis. Nicolau DV; Armitage JP; Maini PK Comput Biol Chem; 2009 Aug; 33(4):269-74. PubMed ID: 19616478 [TBL] [Abstract][Full Text] [Related]
7. Escherichia coli swimming is robust against variations in flagellar number. Mears PJ; Koirala S; Rao CV; Golding I; Chemla YR Elife; 2014 Feb; 3():e01916. PubMed ID: 24520165 [TBL] [Abstract][Full Text] [Related]
8. Run and tumble chemotaxis in a shear flow: the effect of temporal comparisons, persistence, rotational diffusion, and cell shape. Locsei JT; Pedley TJ Bull Math Biol; 2009 Jul; 71(5):1089-116. PubMed ID: 19198954 [TBL] [Abstract][Full Text] [Related]
9. Modeling E. coli tumbles by rotational diffusion. Implications for chemotaxis. Saragosti J; Silberzan P; Buguin A PLoS One; 2012; 7(4):e35412. PubMed ID: 22530021 [TBL] [Abstract][Full Text] [Related]
10. Tumble Suppression Is a Conserved Feature of Swarming Motility. Partridge JD; Nhu NTQ; Dufour YS; Harshey RM mBio; 2020 Jun; 11(3):. PubMed ID: 32546625 [TBL] [Abstract][Full Text] [Related]
11. On the origin and characteristics of noise-induced Lévy walks of E. coli. Matthäus F; Mommer MS; Curk T; Dobnikar J PLoS One; 2011 Apr; 6(4):e18623. PubMed ID: 21494629 [TBL] [Abstract][Full Text] [Related]
12. Inferring the Chemotactic Strategy of P. putida and E. coli Using Modified Kramers-Moyal Coefficients. Pohl O; Hintsche M; Alirezaeizanjani Z; Seyrich M; Beta C; Stark H PLoS Comput Biol; 2017 Jan; 13(1):e1005329. PubMed ID: 28114420 [TBL] [Abstract][Full Text] [Related]
13. Biased reorientation in the chemotaxis of peritrichous bacteria Salmonella enterica serovar Typhimurium. Nakai T; Ando T; Goto T Biophys J; 2021 Jul; 120(13):2623-2630. PubMed ID: 33964275 [TBL] [Abstract][Full Text] [Related]
14. Simulated diffusion of phosphorylated CheY through the cytoplasm of Escherichia coli. Lipkow K; Andrews SS; Bray D J Bacteriol; 2005 Jan; 187(1):45-53. PubMed ID: 15601687 [TBL] [Abstract][Full Text] [Related]
15. Tyrosine 106 of CheY plays an important role in chemotaxis signal transduction in Escherichia coli. Zhu X; Amsler CD; Volz K; Matsumura P J Bacteriol; 1996 Jul; 178(14):4208-15. PubMed ID: 8763950 [TBL] [Abstract][Full Text] [Related]
16. Signaling noise enhances chemotactic drift of E. coli. Flores M; Shimizu TS; ten Wolde PR; Tostevin F Phys Rev Lett; 2012 Oct; 109(14):148101. PubMed ID: 23083290 [TBL] [Abstract][Full Text] [Related]
17. Flagellar dynamics reveal fluctuations and kinetic limit in the Escherichia coli chemotaxis network. Bano R; Mears P; Golding I; Chemla YR Sci Rep; 2023 Dec; 13(1):22891. PubMed ID: 38129516 [TBL] [Abstract][Full Text] [Related]
18. Chemotaxis in external fields: Simulations for active magnetic biological matter. Codutti A; Bente K; Faivre D; Klumpp S PLoS Comput Biol; 2019 Dec; 15(12):e1007548. PubMed ID: 31856155 [TBL] [Abstract][Full Text] [Related]