BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33420025)

  • 1. Bayesian genome scale modelling identifies thermal determinants of yeast metabolism.
    Li G; Hu Y; Jan Zrimec ; Luo H; Wang H; Zelezniak A; Ji B; Nielsen J
    Nat Commun; 2021 Jan; 12(1):190. PubMed ID: 33420025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Squalene epoxidase as a target for manipulation of squalene levels in the yeast Saccharomyces cerevisiae.
    Garaiová M; Zambojová V; Simová Z; Griač P; Hapala I
    FEMS Yeast Res; 2014 Mar; 14(2):310-23. PubMed ID: 24119181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating accessibility, usability and interoperability of genome-scale metabolic models for diverse yeasts species.
    Domenzain I; Li F; Kerkhoven EJ; Siewers V
    FEMS Yeast Res; 2021 Mar; 21(1):. PubMed ID: 33428734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual localization of squalene epoxidase, Erg1p, in yeast reflects a relationship between the endoplasmic reticulum and lipid particles.
    Leber R; Landl K; Zinser E; Ahorn H; Spök A; Kohlwein SD; Turnowsky F; Daum G
    Mol Biol Cell; 1998 Feb; 9(2):375-86. PubMed ID: 9450962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fifteen years of large scale metabolic modeling of yeast: developments and impacts.
    Osterlund T; Nookaew I; Nielsen J
    Biotechnol Adv; 2012; 30(5):979-88. PubMed ID: 21846501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Big data in yeast systems biology.
    Yu R; Nielsen J
    FEMS Yeast Res; 2019 Nov; 19(7):. PubMed ID: 31603503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses.
    Caspeta L; Nielsen J
    mBio; 2015 Jul; 6(4):e00431. PubMed ID: 26199325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel sequence element is involved in the transcriptional regulation of expression of the ERG1 (squalene epoxidase) gene in Saccharomyces cerevisiae.
    Leber R; Zenz R; Schröttner K; Fuchsbichler S; Pühringer B; Turnowsky F
    Eur J Biochem; 2001 Feb; 268(4):914-24. PubMed ID: 11179957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of squalene synthetase and squalene epoxidase activities in Saccharomyces cerevisiae.
    M'Baya B; Fegueur M; Servouse M; Karst F
    Lipids; 1989 Dec; 24(12):1020-3. PubMed ID: 2693869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single amino acid exchanges in FAD-binding domains of squalene epoxidase of Saccharomyces cerevisiae lead to either loss of functionality or terbinafine sensitivity.
    Ruckenstuhl C; Eidenberger A; Lang S; Turnowsky F
    Biochem Soc Trans; 2005 Nov; 33(Pt 5):1197-201. PubMed ID: 16246080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-Scale Metabolic Modeling from Yeast to Human Cell Models of Complex Diseases: Latest Advances and Challenges.
    Chen Y; Li G; Nielsen J
    Methods Mol Biol; 2019; 2049():329-345. PubMed ID: 31602620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-scale protein function prediction in yeast Saccharomyces cerevisiae through integrating multiple sources of high-throughput data.
    Chen Y; Xu D
    Pac Symp Biocomput; 2005; ():471-82. PubMed ID: 15759652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of petite mutation and thermal death in Saccharomyces cerevisiae growing at superoptimal temperatures.
    Simões-Mendes B; Madeira-Lopes A; van Uden N
    Z Allg Mikrobiol; 1978; 18(4):275-9. PubMed ID: 354226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation of squalene is associated with the clustering of lipid droplets.
    Ta MT; Kapterian TS; Fei W; Du X; Brown AJ; Dawes IW; Yang H
    FEBS J; 2012 Nov; 279(22):4231-44. PubMed ID: 23013491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Yeast Genome-Scale Metabolic Models for Simulating Genotype-Phenotype Relations.
    Castillo S; Patil KR; Jouhten P
    Prog Mol Subcell Biol; 2019; 58():111-133. PubMed ID: 30911891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Squalene-Tetrahymanol Cyclase Expression Enables Sterol-Independent Growth of Saccharomyces cerevisiae.
    Wiersma SJ; Mooiman C; Giera M; Pronk JT
    Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32561581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.
    Comitini F; Gobbi M; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M
    Food Microbiol; 2011 Aug; 28(5):873-82. PubMed ID: 21569929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse.
    de Souza CJ; Costa DA; Rodrigues MQ; dos Santos AF; Lopes MR; Abrantes AB; dos Santos Costa P; Silveira WB; Passos FM; Fietto LG
    Bioresour Technol; 2012 Apr; 109():63-9. PubMed ID: 22285296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Kluyveromyces marxianus as a Robust Synthetic Biology Platform Host.
    Cernak P; Estrela R; Poddar S; Skerker JM; Cheng YF; Carlson AK; Chen B; Glynn VM; Furlan M; Ryan OW; Donnelly MK; Arkin AP; Taylor JW; Cate JHD
    mBio; 2018 Sep; 9(5):. PubMed ID: 30254120
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the effect of variable enzyme concentrations in a kinetic model of yeast glycolysis.
    Bruck J; Liebermeister W; Klipp E
    Genome Inform; 2008; 20():1-14. PubMed ID: 19425118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.