BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33420025)

  • 21. Synthetic genome engineering forging new frontiers for wine yeast.
    Pretorius IS
    Crit Rev Biotechnol; 2017 Feb; 37(1):112-136. PubMed ID: 27535766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling Biolog profiles' evolution for yeast growth monitoring in alcoholic fermentation.
    DeNittis M; Zanoni B; Minati JL; Gorra R; Ambrosoli R
    Lett Appl Microbiol; 2011 Feb; 52(2):96-103. PubMed ID: 21175698
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Production of squalene by lactose-fermenting yeast Kluyveromyces lactis with reduced squalene epoxidase activity.
    Drozdíková E; Garaiová M; Csáky Z; Obernauerová M; Hapala I
    Lett Appl Microbiol; 2015 Jul; 61(1):77-84. PubMed ID: 25864715
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improving the phenotype predictions of a yeast genome-scale metabolic model by incorporating enzymatic constraints.
    Sánchez BJ; Zhang C; Nilsson A; Lahtvee PJ; Kerkhoven EJ; Nielsen J
    Mol Syst Biol; 2017 Aug; 13(8):935. PubMed ID: 28779005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preliminary physiological characteristics of thermotolerant Saccharomyces cerevisiae clinical isolates identified by molecular biology techniques.
    Siedlarz P; Sroka M; Dyląg M; Nawrot U; Gonchar M; Kus-Liśkiewicz M
    Lett Appl Microbiol; 2016 Mar; 62(3):277-82. PubMed ID: 26693946
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomewide evolutionary rates in laboratory and wild yeast.
    Ronald J; Tang H; Brem RB
    Genetics; 2006 Sep; 174(1):541-4. PubMed ID: 16816417
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systems biology of lipid metabolism: from yeast to human.
    Nielsen J
    FEBS Lett; 2009 Dec; 583(24):3905-13. PubMed ID: 19854183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiscale models quantifying yeast physiology: towards a whole-cell model.
    Lu H; Kerkhoven EJ; Nielsen J
    Trends Biotechnol; 2022 Mar; 40(3):291-305. PubMed ID: 34303549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome scale models of yeast: towards standardized evaluation and consistent omic integration.
    Sánchez BJ; Nielsen J
    Integr Biol (Camb); 2015 Aug; 7(8):846-58. PubMed ID: 26079294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae.
    Veen M; Stahl U; Lang C
    FEMS Yeast Res; 2003 Oct; 4(1):87-95. PubMed ID: 14554200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. AYbRAH: a curated ortholog database for yeasts and fungi spanning 600 million years of evolution.
    Correia K; Yu SM; Mahadevan R
    Database (Oxford); 2019 Jan; 2019():. PubMed ID: 30893420
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large scale deletions in the Saccharomyces cerevisiae genome create strains with altered regulation of carbon metabolism.
    Murakami K; Tao E; Ito Y; Sugiyama M; Kaneko Y; Harashima S; Sumiya T; Nakamura A; Nishizawa M
    Appl Microbiol Biotechnol; 2007 Jun; 75(3):589-97. PubMed ID: 17345083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Examination of the transcriptional specificity of an enological yeast. A pilot experiment on the chromosome-III right arm.
    Rachidi N; Barre P; Blondin B
    Curr Genet; 2000 Jan; 37(1):1-11. PubMed ID: 10672438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Effect of raised temperatures on the protein and RNA synthesis rate in yeasts].
    Pozmogova IN; Khovrychev MP; Korolev PN
    Mikrobiologiia; 1979; 48(1):39-43. PubMed ID: 370520
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coupling kinetic expressions and metabolic networks for predicting wine fermentations.
    Pizarro F; Varela C; Martabit C; Bruno C; Pérez-Correa JR; Agosin E
    Biotechnol Bioeng; 2007 Dec; 98(5):986-98. PubMed ID: 17497743
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biofuels. Altered sterol composition renders yeast thermotolerant.
    Caspeta L; Chen Y; Ghiaci P; Feizi A; Buskov S; Hallström BM; Petranovic D; Nielsen J
    Science; 2014 Oct; 346(6205):75-8. PubMed ID: 25278608
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A role for MGA2, but not SPT23, in activation of transcription of ERG1 in Saccharomyces cerevisiae.
    Rice C; Cooke M; Treloar N; Vollbrecht P; Stukey J; McDonough V
    Biochem Biophys Res Commun; 2010 Dec; 403(3-4):293-7. PubMed ID: 21075079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiological and technological aspects of large-scale heterologous-protein production with yeasts.
    Hensing MC; Rouwenhorst RJ; Heijnen JJ; van Dijken JP; Pronk JT
    Antonie Van Leeuwenhoek; 1995; 67(3):261-79. PubMed ID: 7778895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laboratory Evolution of a Biotin-Requiring Saccharomyces cerevisiae Strain for Full Biotin Prototrophy and Identification of Causal Mutations.
    Bracher JM; de Hulster E; Koster CC; van den Broek M; Daran JG; van Maris AJA; Pronk JT
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28600311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genome-scale metabolic models of Saccharomyces cerevisiae.
    Nookaew I; Olivares-Hernández R; Bhumiratana S; Nielsen J
    Methods Mol Biol; 2011; 759():445-63. PubMed ID: 21863502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.