BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33420051)

  • 1. Conformational and migrational dynamics of slipped-strand DNA three-way junctions containing trinucleotide repeats.
    Hu T; Morten MJ; Magennis SW
    Nat Commun; 2021 Jan; 12(1):204. PubMed ID: 33420051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Slipped-strand DNAs formed by long (CAG)*(CTG) repeats: slipped-out repeats and slip-out junctions.
    Pearson CE; Tam M; Wang YH; Montgomery SE; Dar AC; Cleary JD; Nichol K
    Nucleic Acids Res; 2002 Oct; 30(20):4534-47. PubMed ID: 12384601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frustration Between Preferred States of Complementary Trinucleotide Repeat DNA Hairpins Anticorrelates with Expansion Disease Propensity.
    Xu P; Zhang J; Pan F; Mahn C; Roland C; Sagui C; Weninger K
    J Mol Biol; 2023 May; 435(10):168086. PubMed ID: 37024008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Resolution NMR Structures of Intrastrand Hairpins Formed by CTG Trinucleotide Repeats.
    Wan L; He A; Li J; Guo P; Han D
    ACS Chem Neurosci; 2024 Feb; 15(4):868-876. PubMed ID: 38319692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interconverting conformations of slipped-DNA junctions formed by trinucleotide repeats affect repair outcome.
    Slean MM; Reddy K; Wu B; Nichol Edamura K; Kekis M; Nelissen FH; Aspers RL; Tessari M; Schärer OD; Wijmenga SS; Pearson CE
    Biochemistry; 2013 Feb; 52(5):773-85. PubMed ID: 23339280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolated short CTG/CAG DNA slip-outs are repaired efficiently by hMutSbeta, but clustered slip-outs are poorly repaired.
    Panigrahi GB; Slean MM; Simard JP; Gileadi O; Pearson CE
    Proc Natl Acad Sci U S A; 2010 Jul; 107(28):12593-8. PubMed ID: 20571119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of strand slippage in DNA hairpins formed by CAG repeats: roles of sequence parity and trinucleotide interrupts.
    Xu P; Pan F; Roland C; Sagui C; Weninger K
    Nucleic Acids Res; 2020 Mar; 48(5):2232-2245. PubMed ID: 31974547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational energetics of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases.
    Völker J; Makube N; Plum GE; Klump HH; Breslauer KJ
    Proc Natl Acad Sci U S A; 2002 Nov; 99(23):14700-5. PubMed ID: 12417759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absence of MutSβ leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks.
    Slean MM; Panigrahi GB; Castel AL; Pearson AB; Tomkinson AE; Pearson CE
    DNA Repair (Amst); 2016 Jun; 42():107-18. PubMed ID: 27155933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triplet repeat DNA structures and human genetic disease: dynamic mutations from dynamic DNA.
    Sinden RR; Potaman VN; Oussatcheva EA; Pearson CE; Lyubchenko YL; Shlyakhtenko LS
    J Biosci; 2002 Feb; 27(1 Suppl 1):53-65. PubMed ID: 11927777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA slip-outs cause RNA polymerase II arrest in vitro: potential implications for genetic instability.
    Salinas-Rios V; Belotserkovskii BP; Hanawalt PC
    Nucleic Acids Res; 2011 Sep; 39(17):7444-54. PubMed ID: 21666257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Incision-dependent and error-free repair of (CAG)(n)/(CTG)(n) hairpins in human cell extracts.
    Hou C; Chan NL; Gu L; Li GM
    Nat Struct Mol Biol; 2009 Aug; 16(8):869-75. PubMed ID: 19597480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous migration routes of DNA triplet repeat slip-outs.
    Bianco S; Hu T; Henrich O; Magennis SW
    Biophys Rep (N Y); 2022 Sep; 2(3):None. PubMed ID: 36299495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FAN1 exo- not endo-nuclease pausing on disease-associated slipped-DNA repeats: A mechanism of repeat instability.
    Deshmukh AL; Caron MC; Mohiuddin M; Lanni S; Panigrahi GB; Khan M; Engchuan W; Shum N; Faruqui A; Wang P; Yuen RKC; Nakamori M; Nakatani K; Masson JY; Pearson CE
    Cell Rep; 2021 Dec; 37(10):110078. PubMed ID: 34879276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A small unstructured nucleic acid disrupts a trinucleotide repeat hairpin.
    Avila-Figueroa A; Cattie D; Delaney S
    Biochem Biophys Res Commun; 2011 Oct; 413(4):532-6. PubMed ID: 21924238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci.
    Pearson CE; Sinden RR
    Biochemistry; 1996 Apr; 35(15):5041-53. PubMed ID: 8664297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus.
    Pearson CE; Wang YH; Griffith JD; Sinden RR
    Nucleic Acids Res; 1998 Feb; 26(3):816-23. PubMed ID: 9443975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases.
    Pearson CE; Ewel A; Acharya S; Fishel RA; Sinden RR
    Hum Mol Genet; 1997 Jul; 6(7):1117-23. PubMed ID: 9215683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro repair of DNA hairpins containing various numbers of CAG/CTG trinucleotide repeats.
    Zhang T; Huang J; Gu L; Li GM
    DNA Repair (Amst); 2012 Feb; 11(2):201-9. PubMed ID: 22041023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of slipped-DNAs at the trinucleotide repeats of the myotonic dystrophy type I disease locus in patient tissues.
    Axford MM; Wang YH; Nakamori M; Zannis-Hadjopoulos M; Thornton CA; Pearson CE
    PLoS Genet; 2013; 9(12):e1003866. PubMed ID: 24367268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.