BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33420071)

  • 41. Mechanisms and function of DUOX in epithelia of the lung.
    Fischer H
    Antioxid Redox Signal; 2009 Oct; 11(10):2453-65. PubMed ID: 19358684
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Ca2+/NADPH-dependent H2O2 generator in thyroid plasma membrane: inhibition by diphenyleneiodonium.
    Dème D; Doussiere J; De Sandro V; Dupuy C; Pommier J; Virion A
    Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):75-81. PubMed ID: 8037694
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Binding of FAD to cytochrome b558 is facilitated during activation of the phagocyte NADPH oxidase, leading to superoxide production.
    Hashida S; Yuzawa S; Suzuki NN; Fujioka Y; Takikawa T; Sumimoto H; Inagaki F; Fujii H
    J Biol Chem; 2004 Jun; 279(25):26378-86. PubMed ID: 15102859
    [TBL] [Abstract][Full Text] [Related]  

  • 44. PGE
    Sajjadian SM; Kim Y
    Open Biol; 2020 Oct; 10(10):200197. PubMed ID: 33081632
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NADPH oxidase DUOX1 sustains TGF-β1 signalling and promotes lung fibrosis.
    Louzada RA; Corre R; Ameziane El Hassani R; Meziani L; Jaillet M; Cazes A; Crestani B; Deutsch E; Dupuy C
    Eur Respir J; 2021 Jan; 57(1):. PubMed ID: 32764116
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Fe-S cluster in the conserved Cys-rich region in the catalytic subunit of FAD-dependent dehydrogenase complexes.
    Shiota M; Yamazaki T; Yoshimatsu K; Kojima K; Tsugawa W; Ferri S; Sode K
    Bioelectrochemistry; 2016 Dec; 112():178-83. PubMed ID: 26951961
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrogen peroxide production by epidermal dual oxidase 1 regulates nociceptive sensory signals.
    Pató A; Bölcskei K; Donkó Á; Kaszás D; Boros M; Bodrogi L; Várady G; Pape VFS; Roux BT; Enyedi B; Helyes Z; Watt FM; Sirokmány G; Geiszt M
    Redox Biol; 2023 Jun; 62():102670. PubMed ID: 36958249
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The nonphagocytic NADPH oxidase Duox1 mediates a positive feedback loop during T cell receptor signaling.
    Kwon J; Shatynski KE; Chen H; Morand S; de Deken X; Miot F; Leto TL; Williams MS
    Sci Signal; 2010 Aug; 3(133):ra59. PubMed ID: 20682913
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulated hydrogen peroxide production by Duox in human airway epithelial cells.
    Forteza R; Salathe M; Miot F; Forteza R; Conner GE
    Am J Respir Cell Mol Biol; 2005 May; 32(5):462-9. PubMed ID: 15677770
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of Asp1393 in catalysis, flavin reduction, NADP(H) binding, FAD thermodynamics, and regulation of the nNOS flavoprotein.
    Konas DW; Takaya N; Sharma M; Stuehr DJ
    Biochemistry; 2006 Oct; 45(41):12596-609. PubMed ID: 17029414
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regulation of dual oxidase expression and H2O2 production by thyroglobulin.
    Yoshihara A; Hara T; Kawashima A; Akama T; Tanigawa K; Wu H; Sue M; Ishido Y; Hiroi N; Ishii N; Yoshino G; Suzuki K
    Thyroid; 2012 Oct; 22(10):1054-62. PubMed ID: 22874065
    [TBL] [Abstract][Full Text] [Related]  

  • 52. NADPH-cytochrome P450 oxidoreductase. Structural basis for hydride and electron transfer.
    Hubbard PA; Shen AL; Paschke R; Kasper CB; Kim JJ
    J Biol Chem; 2001 Aug; 276(31):29163-70. PubMed ID: 11371558
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expression of dual oxidases and secreted cytokines in chronic rhinosinusitis.
    Cho DY; Nayak JV; Bravo DT; Le W; Nguyen A; Edward JA; Hwang PH; Illek B; Fischer H
    Int Forum Allergy Rhinol; 2013 May; 3(5):376-83. PubMed ID: 23281318
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dual oxidase, hydrogen peroxide and thyroid diseases.
    Ohye H; Sugawara M
    Exp Biol Med (Maywood); 2010 Apr; 235(4):424-33. PubMed ID: 20407074
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reactive oxygen species regulate the levels of dual oxidase (Duox1-2) in human neuroblastoma cells.
    Damiano S; Fusco R; Morano A; De Mizio M; Paternò R; De Rosa A; Spinelli R; Amente S; Frunzio R; Mondola P; Miot F; Laccetti P; Santillo M; Avvedimento EV
    PLoS One; 2012; 7(4):e34405. PubMed ID: 22523549
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toxoplasma gondii ferredoxin-NADP+ reductase: Role of ionic interactions in stabilization of native conformation and structural cooperativity.
    Singh K; Bhakuni V
    Proteins; 2008 Jun; 71(4):1879-88. PubMed ID: 18175327
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases.
    Leto TL; Morand S; Hurt D; Ueyama T
    Antioxid Redox Signal; 2009 Oct; 11(10):2607-19. PubMed ID: 19438290
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Four crystal structures of the 60 kDa flavoprotein monomer of the sulfite reductase indicate a disordered flavodoxin-like module.
    Gruez A; Pignol D; Zeghouf M; Covès J; Fontecave M; Ferrer JL; Fontecilla-Camps JC
    J Mol Biol; 2000 May; 299(1):199-212. PubMed ID: 10860732
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Proton channel blockers inhibit Duox activity independent of Hv1 effects.
    Gattas MV; Jaffe A; Barahona J; Conner GE
    Redox Biol; 2020 Jan; 28():101346. PubMed ID: 31678720
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional activity and tumor-specific expression of dual oxidase 2 in pancreatic cancer cells and human malignancies characterized with a novel monoclonal antibody.
    Wu Y; Antony S; Hewitt SM; Jiang G; Yang SX; Meitzler JL; Juhasz A; Lu J; Liu H; Doroshow JH; Roy K
    Int J Oncol; 2013 Apr; 42(4):1229-38. PubMed ID: 23404210
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.