These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33420082)

  • 81. Predictive accuracy of post-fire conifer death declines over time in models based on crown and bole injury.
    Shearman TM; Varner JM; Hood SM; van Mantgem PJ; Cansler CA; Wright M
    Ecol Appl; 2023 Mar; 33(2):e2760. PubMed ID: 36218008
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Host Defense Metabolites Alter the Interactions between a Bark Beetle and its Symbiotic Fungi.
    Agbulu V; Zaman R; Ishangulyyeva G; Cahill JF; Erbilgin N
    Microb Ecol; 2022 Oct; 84(3):834-843. PubMed ID: 34674014
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Trees wanted--dead or alive! Host selection and population dynamics in tree-killing bark beetles.
    Kausrud KL; Grégoire JC; Skarpaas O; Erbilgin N; Gilbert M; Økland B; Stenseth NC
    PLoS One; 2011; 6(5):e18274. PubMed ID: 21647433
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Effects of climate variability and accelerated forest thinning on watershed-scale runoff in southwestern USA ponderosa pine forests.
    Robles MD; Marshall RM; O'Donnell F; Smith EB; Haney JA; Gori DF
    PLoS One; 2014; 9(10):e111092. PubMed ID: 25337823
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.
    Pec GJ; Karst J; Sywenky AN; Cigan PW; Erbilgin N; Simard SW; Cahill JF
    PLoS One; 2015; 10(4):e0124691. PubMed ID: 25859663
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season.
    Sala A; Peters GD; McIntyre LR; Harrington MG
    Tree Physiol; 2005 Mar; 25(3):339-48. PubMed ID: 15631982
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Impacts of bark beetle-induced tree mortality on pyrogenic carbon production and heat output in wildfires for fire modeling and global carbon accounting.
    Howell A; Bretfeld M; Belmont E
    Sci Total Environ; 2021 Mar; 760():144149. PubMed ID: 33341616
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Legacies of more frequent drought in ponderosa pine across the western United States.
    Peltier DMP; Ogle K
    Glob Chang Biol; 2019 Nov; 25(11):3803-3816. PubMed ID: 31155807
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Linoleic Acid Promotes Emission of Bark Beetle Semiochemicals by Fungal Symbionts.
    Unelius CR; Ganji S; Krokene P
    J Chem Ecol; 2023 Feb; 49(1-2):59-66. PubMed ID: 36585598
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Influence of aggregation inhibitors (verbenone and ipsidenol) on landing and attack behavior ofDendroctonus brevicomis (Coleoptera: Scolytidae).
    Bertram SL; Paine TD
    J Chem Ecol; 1994 Jul; 20(7):1617-29. PubMed ID: 24242655
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Snagfall the first decade after severe bark beetle infestation of high-elevation forests in Colorado, USA.
    Rhoades CC; Hubbard RM; Hood PR; Starr BJ; Tinker DB; Elder K
    Ecol Appl; 2020 Apr; 30(3):e02059. PubMed ID: 31849139
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Spatiotemporal patterns of observed bark beetle-caused tree mortality in British Columbia and the western United States.
    Meddens AJ; Hicke JA; Ferguson CA
    Ecol Appl; 2012 Oct; 22(7):1876-91. PubMed ID: 23210306
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Fitness consequences of pheromone production and host selection strategies in a tree-killing bark beetle (Coleoptera: Curculionidae: Scolytinae).
    Pureswaran DS; Sullivan BT; Ayres MP
    Oecologia; 2006 Jul; 148(4):720-8. PubMed ID: 16609873
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Differential dispersal and the Allee effect create power-law behaviour: Distribution of spot infestations during mountain pine beetle outbreaks.
    Powell JA; Garlick MJ; Bentz BJ; Friedenberg N
    J Anim Ecol; 2018 Jan; 87(1):73-86. PubMed ID: 28543273
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Coastal fog during summer drought improves the water status of sapling trees more than adult trees in a California pine forest.
    Baguskas SA; Still CJ; Fischer DT; D'Antonio CM; King JY
    Oecologia; 2016 May; 181(1):137-48. PubMed ID: 26852312
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Recent mountain pine beetle outbreaks, wildfire severity, and postfire tree regeneration in the US Northern Rockies.
    Harvey BJ; Donato DC; Turner MG
    Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15120-5. PubMed ID: 25267633
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Insect outbreak shifts the direction of selection from fast to slow growth rates in the long-lived conifer
    de la Mata R; Hood S; Sala A
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7391-7396. PubMed ID: 28652352
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Relative importance of climate and mountain pine beetle outbreaks on the occurrence of large wildfires in the western USA.
    Mietkiewicz N; Kulakowski D
    Ecol Appl; 2016 Dec; 26(8):2523-2535. PubMed ID: 27787956
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Addressing a century-old hypothesis - do pioneer beetles of Ips typographus use volatile cues to find suitable host trees?
    Lehmanski LMA; Kandasamy D; Andersson MN; Netherer S; Alves EG; Huang J; Hartmann H
    New Phytol; 2023 Jun; 238(5):1762-1770. PubMed ID: 36880374
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Climate and landscape drive the pace and pattern of conifer encroachment into subalpine meadows.
    Lubetkin KC; Westerling AL; Kueppers LM
    Ecol Appl; 2017 Sep; 27(6):1876-1887. PubMed ID: 28482135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.