BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 33420107)

  • 21. Phonatory control in male singing: a study of the effects of subglottal pressure, fundamental frequency, and mode of phonation on the voice source.
    Sundberg J; Titze I; Scherer R
    J Voice; 1993 Mar; 7(1):15-29. PubMed ID: 8353616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the acoustic effects of the supraglottic structures in excised larynges.
    Alipour F; Finnegan E
    J Acoust Soc Am; 2013 May; 133(5):2984-92. PubMed ID: 23654402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phonatory vocal fold function in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Otolaryngol Head Neck Surg; 1990 Dec; 103(6):947-56. PubMed ID: 2126129
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glottographic analysis of phonation in the excised canine larynx.
    Slavit DH; Lipton RJ; McCaffrey TV
    Ann Otol Rhinol Laryngol; 1990 May; 99(5 Pt 1):396-402. PubMed ID: 2337319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On pressure-frequency relations in the excised larynx.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2007 Oct; 122(4):2296-305. PubMed ID: 17902865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracheo-bronchial soft tissue and cartilage resonances in the subglottal acoustic input impedance.
    Lulich SM; Arsikere H
    J Acoust Soc Am; 2015 Jun; 137(6):3436-46. PubMed ID: 26093432
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects on the glottal voice source of vocal loudness variation in untrained female and male voices.
    Sundberg J; Fahlstedt E; Morell A
    J Acoust Soc Am; 2005 Feb; 117(2):879-85. PubMed ID: 15759707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aerodynamically and acoustically driven modes of vibration in a physical model of the vocal folds.
    Zhang Z; Neubauer J; Berry DA
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2841-9. PubMed ID: 17139742
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct measurement of planar flow rate in an excised canine larynx model.
    Oren L; Khosla S; Dembinski D; Ying J; Gutmark E
    Laryngoscope; 2015 Feb; 125(2):383-8. PubMed ID: 25093928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of the rabbit larynx in an excised larynx setup.
    Maytag AL; Robitaille MJ; Rieves AL; Madsen J; Smith BL; Jiang JJ
    J Voice; 2013 Jan; 27(1):24-8. PubMed ID: 23159025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of glottal closure and airflow in a three-dimensional phonation model: implications for vocal intensity control.
    Zhang Z
    J Acoust Soc Am; 2015 Feb; 137(2):898-910. PubMed ID: 25698022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vocal intensity in falsetto phonation of a countertenor: an analysis by synthesis approach.
    Tom K; Titze IR
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1667-76. PubMed ID: 11572375
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Parameters From the Complete Phonatory Range of an Excised Rabbit Larynx.
    Mills RD; Dodd K; Ablavsky A; Devine E; Jiang JJ
    J Voice; 2017 Jul; 31(4):517.e9-517.e17. PubMed ID: 28108153
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of acoustic loading on an effective single mass model of the vocal folds.
    Zañartu M; Mongeau L; Wodicka GR
    J Acoust Soc Am; 2007 Feb; 121(2):1119-29. PubMed ID: 17348533
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glissando: laryngeal motorics and acoustics.
    Hoppe U; Rosanowski F; Döllinger M; Lohscheller J; Schuster M; Eysholdt U
    J Voice; 2003 Sep; 17(3):370-6. PubMed ID: 14513959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation.
    Titze IR; Talkin DT
    J Acoust Soc Am; 1979 Jul; 66(1):60-74. PubMed ID: 489833
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational aeroacoustics of phonation, part II: Effects of flow parameters and ventricular folds.
    Zhang C; Zhao W; Frankel SH; Mongeau L
    J Acoust Soc Am; 2002 Nov; 112(5 Pt 1):2147-54. PubMed ID: 12430826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fluid-structure-acoustic interactions in an ex vivo porcine phonation model.
    Semmler M; Berry DA; Schützenberger A; Döllinger M
    J Acoust Soc Am; 2021 Mar; 149(3):1657. PubMed ID: 33765793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of vocal fold physiology from voice acoustics using machine learning.
    Zhang Z
    J Acoust Soc Am; 2020 Mar; 147(3):EL264. PubMed ID: 32237804
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study of phonation in the excised canine larynx.
    Yanagi E; Slavit DH; McCaffrey TV
    Otolaryngol Head Neck Surg; 1991 Oct; 105(4):586-95. PubMed ID: 1762795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.