These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 33420107)

  • 61. Correlation analysis of the physiological factors controlling fundamental voice frequency.
    Atkinson JE
    J Acoust Soc Am; 1978 Jan; 63(1):211-22. PubMed ID: 632414
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Investigation of phonatory characteristics using ex vivo rabbit larynges.
    Döllinger M; Kniesburges S; Berry DA; Birk V; Wendler O; Dürr S; Alexiou C; Schützenberger A
    J Acoust Soc Am; 2018 Jul; 144(1):142. PubMed ID: 30075689
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Onset and offset phonation threshold flow in excised canine larynges.
    Regner MF; Tao C; Zhuang P; Jiang JJ
    Laryngoscope; 2008 Jul; 118(7):1313-7. PubMed ID: 18401267
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Phase relationship between dynamics of the subglottic pressure and oscillatory movement of the vocal folds. I. Sustained phonation].
    Dejonckere P; Lebacq J
    Arch Int Physiol Biochim; 1980 Oct; 88(4):333-41. PubMed ID: 6163402
    [TBL] [Abstract][Full Text] [Related]  

  • 65. How the acoustic resonances of the subglottal tract affect the impedance spectrum measured through the lips.
    Hanna N; Smith J; Wolfe J
    J Acoust Soc Am; 2018 May; 143(5):2639. PubMed ID: 29857706
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Direct measurement of pressures involved in vocal exercises using semi-occluded vocal tracts.
    Robieux C; Galant C; Lagier A; Legou T; Giovanni A
    Logoped Phoniatr Vocol; 2015 Oct; 40(3):106-12. PubMed ID: 24850270
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Physical parameter estimation from porcine ex vivo vocal fold dynamics in an inverse problem framework.
    Gómez P; Schützenberger A; Kniesburges S; Bohr C; Döllinger M
    Biomech Model Mechanobiol; 2018 Jun; 17(3):777-792. PubMed ID: 29230589
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Resonances and wave propagation velocity in the subglottal airways.
    Lulich SM; Alwan A; Arsikere H; Morton JR; Sommers MS
    J Acoust Soc Am; 2011 Oct; 130(4):2108-15. PubMed ID: 21973365
    [TBL] [Abstract][Full Text] [Related]  

  • 69. On subglottal formant analysis.
    Cranen B; Boves L
    J Acoust Soc Am; 1987 Mar; 81(3):734-46. PubMed ID: 3584682
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Complex vibratory patterns in an elephant larynx.
    Herbst CT; Svec JG; Lohscheller J; Frey R; Gumpenberger M; Stoeger AS; Fitch WT
    J Exp Biol; 2013 Nov; 216(Pt 21):4054-64. PubMed ID: 24133151
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A quantitative output-cost ratio in voice production.
    Berry DA; Verdolini K; Montequin DW; Hess MM; Chan RW; Titze IR
    J Speech Lang Hear Res; 2001 Feb; 44(1):29-37. PubMed ID: 11218106
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Experimental study of vocal-ventricular fold oscillations in voice production.
    Matsumoto T; Kanaya M; Ishimura K; Tokuda IT
    J Acoust Soc Am; 2021 Jan; 149(1):271. PubMed ID: 33514158
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effects of dehydration on phonation in excised canine larynges.
    Jiang J; Verdolini K; Aquino B; Ng J; Hanson D
    Ann Otol Rhinol Laryngol; 2000 Jun; 109(6):568-75. PubMed ID: 10855568
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Respiratory Laryngeal Coordination in Airflow Conservation and Reduction of Respiratory Effort of Phonation.
    Zhang Z
    J Voice; 2016 Nov; 30(6):760.e7-760.e13. PubMed ID: 26596845
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Nonlinear source-filter coupling due to the addition of a simplified vocal tract model for excised larynx experiments.
    Smith BL; Nemcek SP; Swinarski KA; Jiang JJ
    J Voice; 2013 May; 27(3):261-6. PubMed ID: 23490131
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of False Vocal Folds on Intraglottal Velocity Fields.
    Oren L; Khosla S; Farbos de Luzan C; Gutmark E
    J Voice; 2021 Sep; 35(5):695-702. PubMed ID: 32147314
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A rat excised larynx model of vocal fold scar.
    Welham NV; Montequin DW; Tateya I; Tateya T; Choi SH; Bless DM
    J Speech Lang Hear Res; 2009 Aug; 52(4):1008-20. PubMed ID: 19641079
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Aerodynamic and acoustic effects of abrupt frequency changes in excised larynges.
    Alipour F; Finnegan EM; Scherer RC
    J Speech Lang Hear Res; 2009 Apr; 52(2):465-81. PubMed ID: 18695011
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Medial Surface Dynamics as a Function of Subglottal Pressure in a Canine Larynx Model.
    Oren L; Khosla S; Gutmark E
    J Voice; 2021 Jan; 35(1):69-76. PubMed ID: 31387765
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Phonation Demonstrates Goal Dependence Under Unique Vocal Intensity and Aerobic Workload Conditions.
    Ziegler A; VanSwearingen J; Jakicic JM; Verdolini Abbott K
    J Speech Lang Hear Res; 2019 Aug; 62(8):2584-2600. PubMed ID: 31291159
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.