BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33420129)

  • 1. High planting density induces the expression of GA3-oxidase in leaves and GA mediated stem elongation in bioenergy sorghum.
    Yu KMJ; McKinley B; Rooney WL; Mullet JE
    Sci Rep; 2021 Jan; 11(1):46. PubMed ID: 33420129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The AGCVIII kinase Dw2 modulates cell proliferation, endomembrane trafficking, and MLG/xylan cell wall localization in elongating stem internodes of Sorghum bicolor.
    Oliver J; Fan M; McKinley B; Zemelis-Durfee S; Brandizzi F; Wilkerson C; Mullet JE
    Plant J; 2021 Feb; 105(4):1053-1071. PubMed ID: 33211340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breadfruit (Artocarpus altilis) gibberellin 2-oxidase genes in stem elongation and abiotic stress response.
    Zhou Y; Underhill SJ
    Plant Physiol Biochem; 2016 Jan; 98():81-8. PubMed ID: 26646240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shade signals alter the expression of circadian clock genes in newly-formed bioenergy sorghum internodes.
    Kebrom TH; McKinley BA; Mullet JE
    Plant Direct; 2020 Jun; 4(6):e00235. PubMed ID: 32607464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth.
    Kurepin LV; Emery RJ; Pharis RP; Reid DM
    J Exp Bot; 2007; 58(8):2145-57. PubMed ID: 17490995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor.
    McKinley B; Rooney W; Wilkerson C; Mullet J
    Plant J; 2016 Nov; 88(4):662-680. PubMed ID: 27411301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of gene expression during development and expansion of vegetative stem internodes of bioenergy sorghum.
    Kebrom TH; McKinley B; Mullet JE
    Biotechnol Biofuels; 2017; 10():159. PubMed ID: 28649278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leaf-induced gibberellin signaling is essential for internode elongation, cambial activity, and fiber differentiation in tobacco stems.
    Dayan J; Voronin N; Gong F; Sun TP; Hedden P; Fromm H; Aloni R
    Plant Cell; 2012 Jan; 24(1):66-79. PubMed ID: 22253226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid.
    Wang L; Mu C; Du M; Chen Y; Tian X; Zhang M; Li Z
    Plant Sci; 2014 Aug; 225():15-23. PubMed ID: 25017155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice.
    Ayano M; Kani T; Kojima M; Sakakibara H; Kitaoka T; Kuroha T; Angeles-Shim RB; Kitano H; Nagai K; Ashikari M
    Plant Cell Environ; 2014 Oct; 37(10):2313-24. PubMed ID: 24891164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasticity of Sorghum Stem Biomass Accumulation in Response to Water Deficit: A Multiscale Analysis from Internode Tissue to Plant Level.
    Perrier L; Rouan L; Jaffuel S; Clément-Vidal A; Roques S; Soutiras A; Baptiste C; Bastianelli D; Fabre D; Dubois C; Pot D; Luquet D
    Front Plant Sci; 2017; 8():1516. PubMed ID: 28919904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Sheathed Spike Gene,
    Si X; Wang W; Wang K; Liu Y; Bai J; Meng Y; Zhang X; Liu H
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of stem sugar and its remobilisation in response to drought stress in a sweet sorghum genotype and its near-isogenic lines carrying different stay-green loci.
    Ghate T; Deshpande S; Bhargava S
    Plant Biol (Stuttg); 2017 May; 19(3):396-405. PubMed ID: 28032438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of a class III gibberellin 2-oxidase in tomato internode elongation.
    Schrager-Lavelle A; Gath NN; Devisetty UK; Carrera E; López-Díaz I; Blázquez MA; Maloof JN
    Plant J; 2019 Feb; 97(3):603-615. PubMed ID: 30394600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The multiple contributions of phytochromes to the control of internode elongation in rice.
    Iwamoto M; Kiyota S; Hanada A; Yamaguchi S; Takano M
    Plant Physiol; 2011 Nov; 157(3):1187-95. PubMed ID: 21911595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repression of gibberellin biosynthesis or signaling produces striking alterations in poplar growth, morphology, and flowering.
    Zawaski C; Kadmiel M; Pickens J; Ma C; Strauss S; Busov V
    Planta; 2011 Dec; 234(6):1285-98. PubMed ID: 21792553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in energy sorghum hybrid TX08001 biomass composition and lignin chemistry during development under irrigated and non-irrigated field conditions.
    McKinley BA; Olson SN; Ritter KB; Herb DW; Karlen SD; Lu F; Ralph J; Rooney WL; Mullet JE
    PLoS One; 2018; 13(4):e0195863. PubMed ID: 29684037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gibberellin deficiency pleiotropically induces culm bending in sorghum: an insight into sorghum semi-dwarf breeding.
    Ordonio RL; Ito Y; Hatakeyama A; Ohmae-Shinohara K; Kasuga S; Tokunaga T; Mizuno H; Kitano H; Matsuoka M; Sazuka T
    Sci Rep; 2014 Jun; 4():5287. PubMed ID: 24924234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonistic regulation of the gibberellic acid response during stem growth in rice.
    Nagai K; Mori Y; Ishikawa S; Furuta T; Gamuyao R; Niimi Y; Hobo T; Fukuda M; Kojima M; Takebayashi Y; Fukushima A; Himuro Y; Kobayashi M; Ackley W; Hisano H; Sato K; Yoshida A; Wu J; Sakakibara H; Sato Y; Tsuji H; Akagi T; Ashikari M
    Nature; 2020 Aug; 584(7819):109-114. PubMed ID: 32669710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of the gibberellin 2-oxidase gene from Torenia fournieri induces dwarf phenotypes in the liliaceous monocotyledon Tricyrtis sp.
    Otani M; Meguro S; Gondaira H; Hayashi M; Saito M; Han DS; Inthima P; Supaibulwatana K; Mori S; Jikumaru Y; Kamiya Y; Li T; Niki T; Nishijima T; Koshioka M; Nakano M
    J Plant Physiol; 2013 Nov; 170(16):1416-23. PubMed ID: 23747060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.