These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 33420818)
41. Enhancing electrical outputs of the fuel cells with Geobacter sulferreducens by overexpressing nanowire proteins. Wang Z; Hu Y; Dong Y; Shi L; Jiang Y Microb Biotechnol; 2023 Mar; 16(3):534-545. PubMed ID: 36815664 [TBL] [Abstract][Full Text] [Related]
42. Improved power generation using nitrogen-doped 3D graphite foam anodes in microbial fuel cells. Guo W; Chao S; Chen Q Bioprocess Biosyst Eng; 2020 Jan; 43(1):143-151. PubMed ID: 31535224 [TBL] [Abstract][Full Text] [Related]
43. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output. Picot M; Lapinsonnière L; Rothballer M; Barrière F Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564 [TBL] [Abstract][Full Text] [Related]
44. Multiwalled carbon nanotube/polyarcylonitrile composite as anode material for microbial fuel cells application. Kim SI; Roh SH J Nanosci Nanotechnol; 2010 May; 10(5):3271-4. PubMed ID: 20358937 [TBL] [Abstract][Full Text] [Related]
45. Bimetallic oxide MnFe Xue P; Jiang S; Li W; Shi K; Ma L; Li P Bioprocess Biosyst Eng; 2021 Jun; 44(6):1119-1130. PubMed ID: 33555380 [TBL] [Abstract][Full Text] [Related]
46. Structures, Compositions, and Activities of Live Shewanella Biofilms Formed on Graphite Electrodes in Electrochemical Flow Cells. Kitayama M; Koga R; Kasai T; Kouzuma A; Watanabe K Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28625998 [TBL] [Abstract][Full Text] [Related]
47. Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells. Agrahari R; Bayar B; Abubackar HN; Giri BS; Rene ER; Rani R Chemosphere; 2022 Mar; 290():133184. PubMed ID: 34890618 [TBL] [Abstract][Full Text] [Related]
48. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells. Tang J; Chen S; Yuan Y; Cai X; Zhou S Biosens Bioelectron; 2015 Sep; 71():387-395. PubMed ID: 25950933 [TBL] [Abstract][Full Text] [Related]
49. 3D Hierarchical Co Wang Y; Cheng X; Liu K; Dai X; Qi J; Ma Z; Qiu Y; Liu S ACS Appl Mater Interfaces; 2022 Aug; 14(31):35809-35821. PubMed ID: 35912639 [TBL] [Abstract][Full Text] [Related]
50. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells. Pinto D; Coradin T; Laberty-Robert C Bioelectrochemistry; 2018 Apr; 120():1-9. PubMed ID: 29132011 [TBL] [Abstract][Full Text] [Related]
51. Study of different carbon materials for their use as bioanodes in microbial fuel cells. González-Nava C; Godínez LA; Chávez AU; Cercado B; Arriaga LG; Rodríguez-Valadez FJ Water Sci Technol; 2016; 73(12):2849-57. PubMed ID: 27332829 [TBL] [Abstract][Full Text] [Related]
52. The study of electrochemically active microbial biofilms on different carbon-based anode materials in microbial fuel cells. Liu Y; Harnisch F; Fricke K; Schröder U; Climent V; Feliu JM Biosens Bioelectron; 2010 May; 25(9):2167-71. PubMed ID: 20189793 [TBL] [Abstract][Full Text] [Related]
53. Reductive electrografting of in situ produced diazopyridinium cations: Tailoring the interface between carbon electrodes and electroactive bacterial films. Smida H; Lebègue E; Bergamini JF; Barrière F; Lagrost C Bioelectrochemistry; 2018 Apr; 120():157-165. PubMed ID: 29275091 [TBL] [Abstract][Full Text] [Related]
54. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. Wang H; Wang G; Ling Y; Qian F; Song Y; Lu X; Chen S; Tong Y; Li Y Nanoscale; 2013 Nov; 5(21):10283-90. PubMed ID: 24057049 [TBL] [Abstract][Full Text] [Related]
55. Tailored glycosylated anode surfaces: Addressing the exoelectrogen bacterial community via functional layers for microbial fuel cell applications. Iannaci A; Myles A; Flinois T; Behan JA; Barrière F; Scanlan EM; Colavita PE Bioelectrochemistry; 2020 Dec; 136():107621. PubMed ID: 32791485 [TBL] [Abstract][Full Text] [Related]
56. Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities. Larrosa-Guerrero A; Scott K; Katuri KP; Godinez C; Head IM; Curtis T Appl Microbiol Biotechnol; 2010 Aug; 87(5):1699-713. PubMed ID: 20473665 [TBL] [Abstract][Full Text] [Related]
57. MnCo Tahir K; Miran W; Jang J; Maile N; Shahzad A; Moztahida M; Ghani AA; Kim B; Lee DS Chemosphere; 2021 Feb; 265():129098. PubMed ID: 33272661 [TBL] [Abstract][Full Text] [Related]
58. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells. Di Domenico EG; Petroni G; Mancini D; Geri A; Di Palma L; Ascenzioni F Biomed Res Int; 2015; 2015():351014. PubMed ID: 26273609 [TBL] [Abstract][Full Text] [Related]
59. Tailoring Surface Properties of Electrodes for Synchronous Enhanced Extracellular Electron Transfer and Enriched Exoelectrogens in Microbial Fuel Cells. Li Y; Liu J; Chen X; Wu J; Li N; He W; Feng Y ACS Appl Mater Interfaces; 2021 Dec; 13(49):58508-58521. PubMed ID: 34871496 [TBL] [Abstract][Full Text] [Related]
60. Influence of shear stress on electroactive biofilm characteristics and performance in microbial fuel cells. Godain A; Vogel TM; Fongarland P; Haddour N Biosens Bioelectron; 2024 Jan; 244():115806. PubMed ID: 37944355 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]