These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 33420818)
61. Enhanced electricity production by use of reconstituted artificial consortia of estuarine bacteria grown as biofilms. Zhang J; Zhang E; Scott K; Burgess JG Environ Sci Technol; 2012 Mar; 46(5):2984-92. PubMed ID: 22352455 [TBL] [Abstract][Full Text] [Related]
62. Construction of a new type of three-dimensional honeycomb-structure anode in microbial electrochemical systems for energy harvesting and pollutant removal. Li J; Chen D; Liu G; Li D; Tian Y; Feng Y Water Res; 2022 Jun; 218():118429. PubMed ID: 35483206 [TBL] [Abstract][Full Text] [Related]
63. Biosynthetic graphene enhanced extracellular electron transfer for high performance anode in microbial fuel cell. Zhou S; Lin M; Zhuang Z; Liu P; Chen Z Chemosphere; 2019 Oct; 232():396-402. PubMed ID: 31158634 [TBL] [Abstract][Full Text] [Related]
64. Stratified microbial structure and activity within anode biofilm during electrochemically assisted brewery wastewater treatment. Mai Q; Yang G; Cao J; Zhang X; Zhuang L Biotechnol Bioeng; 2020 Jul; 117(7):2023-2031. PubMed ID: 32208520 [TBL] [Abstract][Full Text] [Related]
65. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells. Sonawane JM; Yadav A; Ghosh PC; Adeloju SB Biosens Bioelectron; 2017 Apr; 90():558-576. PubMed ID: 27825877 [TBL] [Abstract][Full Text] [Related]
66. Microbial community composition and electricity generation in cattle manure slurry treatment using microbial fuel cells: effects of inoculum addition. Xie B; Gong W; Ding A; Yu H; Qu F; Tang X; Yan Z; Li G; Liang H Environ Sci Pollut Res Int; 2017 Oct; 24(29):23226-23235. PubMed ID: 28831702 [TBL] [Abstract][Full Text] [Related]
67. Initial development and structure of biofilms on microbial fuel cell anodes. Read ST; Dutta P; Bond PL; Keller J; Rabaey K BMC Microbiol; 2010 Apr; 10():98. PubMed ID: 20356407 [TBL] [Abstract][Full Text] [Related]
68. Different types of carbon nanotube-based anodes to improve microbial fuel cell performance. Thepsuparungsikul N; Ng TC; Lefebvre O; Ng HY Water Sci Technol; 2014; 69(9):1900-10. PubMed ID: 24804666 [TBL] [Abstract][Full Text] [Related]
69. Vitamin-C-enabled reduced graphene oxide chemistry for tuning biofilm phenotypes of methylotrophs on nickel electrodes in microbial fuel cells. Islam J; Chilkoor G; Jawaharraj K; Dhiman SS; Sani R; Gadhamshetty V Bioresour Technol; 2020 Mar; 300():122642. PubMed ID: 31911315 [TBL] [Abstract][Full Text] [Related]
70. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell. Song TS; Jin Y; Bao J; Kang D; Xie J J Hazard Mater; 2016 Nov; 317():73-80. PubMed ID: 27262274 [TBL] [Abstract][Full Text] [Related]
71. Identification of biofilm formation and exoelectrogenic population structure and function with graphene/polyanliline modified anode in microbial fuel cell. Lin XQ; Li ZL; Liang B; Nan J; Wang AJ Chemosphere; 2019 Mar; 219():358-364. PubMed ID: 30551102 [TBL] [Abstract][Full Text] [Related]
72. [Analysis and Characterization of Multi-modified Anodes via Nitric Acid and PPy/AQDS in Microbial Fuel Cells]. Shen WH; Zhu NW; Yin FH; Wu PX; Zhang YH Huan Jing Ke Xue; 2016 Sep; 37(9):3488-3497. PubMed ID: 29964785 [TBL] [Abstract][Full Text] [Related]
73. Sampling natural biofilms: a new route to build efficient microbial anodes. Erable B; Roncato MA; Achouak W; Bergel A Environ Sci Technol; 2009 May; 43(9):3194-9. PubMed ID: 19534134 [TBL] [Abstract][Full Text] [Related]
74. Nanostructured graphene/TiO2 hybrids as high-performance anodes for microbial fuel cells. Zhao CE; Wang WJ; Sun D; Wang X; Zhang JR; Zhu JJ Chemistry; 2014 Jun; 20(23):7091-7. PubMed ID: 24753231 [TBL] [Abstract][Full Text] [Related]
75. A 3D porous NCNT sponge anode modified with chitosan and Polyaniline for high-performance microbial fuel cell. Xu H; Wang L; Wen Q; Chen Y; Qi L; Huang J; Tang Z Bioelectrochemistry; 2019 Oct; 129():144-153. PubMed ID: 31158799 [TBL] [Abstract][Full Text] [Related]
76. In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle. Cheng Y; Mallavarapu M; Naidu R; Chen Z Chemosphere; 2018 Feb; 193():618-624. PubMed ID: 29169138 [TBL] [Abstract][Full Text] [Related]
77. Facile Fabrication of Graphene-Containing Foam as a High-Performance Anode for Microbial Fuel Cells. Yang L; Wang S; Peng S; Jiang H; Zhang Y; Deng W; Tan Y; Ma M; Xie Q Chemistry; 2015 Jul; 21(30):10634-8. PubMed ID: 26095648 [TBL] [Abstract][Full Text] [Related]
78. Polydopamine/polypyrrole-modified graphite felt enhances biocompatibility for electroactive bacteria and power density of microbial fuel cell. Kim M; Li S; Kong DS; Song YE; Park SY; Kim HI; Jae J; Chung I; Kim JR Chemosphere; 2023 Feb; 313():137388. PubMed ID: 36455658 [TBL] [Abstract][Full Text] [Related]
79. Influence of inoculum and anode surface properties on the selection of Geobacter-dominated biofilms. Commault AS; Barrière F; Lapinsonnière L; Lear G; Bouvier S; Weld RJ Bioresour Technol; 2015 Nov; 195():265-72. PubMed ID: 26166461 [TBL] [Abstract][Full Text] [Related]
80. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials. Zhu X; Tokash JC; Hong Y; Logan BE Bioelectrochemistry; 2013 Apr; 90():30-5. PubMed ID: 23178374 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]