BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 3342090)

  • 1. Intervention in free radical mediated hepatotoxicity and lipid peroxidation by indole-3-carbinol.
    Shertzer HG; Berger ML; Tabor MW
    Biochem Pharmacol; 1988 Jan; 37(2):333-8. PubMed ID: 3342090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protection against carbon tetrachloride hepatotoxicity by 5,10-dihydroindeno[1,2-b]indole, a potent inhibitor of lipid peroxidation.
    Shertzer HG; Sainsbury M
    Food Chem Toxicol; 1988 Jun; 26(6):517-22. PubMed ID: 3169651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indole-3-carbinol inhibits lipid peroxidation in cell-free systems.
    Shertzer HG; Niemi MP; Tabor MW
    Adv Exp Med Biol; 1986; 197():347-56. PubMed ID: 3766267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protection against carbon tetrachloride hepatotoxicity by pretreatment with indole-3-carbinol.
    Shertzer HG; Niemi MP; Reitman FA; Berger ML; Myers BL; Tabor MW
    Exp Mol Pathol; 1987 Apr; 46(2):180-9. PubMed ID: 3556531
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relationship of oxygen and glutathione in protection against carbon tetrachloride-induced hepatic microsomal lipid peroxidation and covalent binding in the rat. Rationale for the use of hyperbaric oxygen to treat carbon tetrachloride ingestion.
    Burk RF; Lane JM; Patel K
    J Clin Invest; 1984 Dec; 74(6):1996-2001. PubMed ID: 6511912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protection of hepatocytes with hyperoxia against carbon tetrachloride-induced injury.
    Bernacchi A; Myers R; Trump BF; Marzella L
    Toxicol Pathol; 1984; 12(4):315-23. PubMed ID: 6533753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoprotective and hepatic enzyme induction properties of indole and indenoindole antioxidants in rats.
    Shertzer HG; Sainsbury M
    Food Chem Toxicol; 1991 Jun; 29(6):391-400. PubMed ID: 1874467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations of the microsomal glucose-6-phosphatase system evoked by ferrous iron- and haloalkane free-radical-mediated lipid peroxidation.
    de Groot H; Noll T; Rymsa B
    Biochim Biophys Acta; 1986 May; 881(3):350-5. PubMed ID: 3008850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promethazine inhibits the formation of aldehydic products of lipid peroxidation but not covalent binding resulting from the exposure of rat liver fractions to CCl4.
    Poli G; Cheeseman KH; Biasi F; Chiarpotto E; Dianzani MU; Esterbauer H; Slater TF
    Biochem J; 1989 Dec; 264(2):527-32. PubMed ID: 2604730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The critical steady-state hypoxic conditions in carbon tetrachloride-induced lipid peroxidation in rat liver microsomes.
    Noll T; De Groot H
    Biochim Biophys Acta; 1984 Sep; 795(2):356-62. PubMed ID: 6477950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The protective effects of eugenol on carbon tetrachloride induced hepatotoxicity in rats.
    Nagababu E; Sesikeran B; Lakshmaiah N
    Free Radic Res; 1995 Dec; 23(6):617-27. PubMed ID: 8574354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid peroxidation in purified plasma membrane fractions of rat liver in relation to the hepatoxicity of carbon tetrachloride.
    Le Page RN; Cheeseman KH; Osman N; Slater TF
    Cell Biochem Funct; 1988 Apr; 6(2):87-99. PubMed ID: 2837346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of microsomal lipid peroxidation and monooxygenase activities by eugenol.
    Nagababu E; Lakshmaiah N
    Free Radic Res; 1994 Apr; 20(4):253-66. PubMed ID: 8205227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model.
    Weber LW; Boll M; Stampfl A
    Crit Rev Toxicol; 2003; 33(2):105-36. PubMed ID: 12708612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulation of mouse heart and liver microsomal lipid peroxidation by anthracycline anticancer drugs: characterization and effects of reactive oxygen scavengers.
    Mimnaugh EG; Gram TE; Trush MA
    J Pharmacol Exp Ther; 1983 Sep; 226(3):806-16. PubMed ID: 6411900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of carbonyl compounds (4-hydroxyalkenals) originating from the peroxidation of liver microsomal lipids on various microsomal enzyme activities of the liver.
    Ferrali M; Fulceri R; Benedetti A; Comporti M
    Res Commun Chem Pathol Pharmacol; 1980 Oct; 30(1):99-112. PubMed ID: 6254122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for carbon tetrachloride-induced lipid peroxidation in mouse liver.
    Lee PY; McCay PB; Hornbrook KR
    Biochem Pharmacol; 1982 Feb; 31(3):405-9. PubMed ID: 7073767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Criteria for determination of lipid peroxidation in tissues: estimation in liver of mice intoxicated with carbon tetrachloride.
    Kim RS; LaBella FS
    Can J Physiol Pharmacol; 1987 Jul; 65(7):1503-6. PubMed ID: 3664365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced glutathione protection against rat liver microsomal injury by carbon tetrachloride. Dependence on O2.
    Burk RF; Patel K; Lane JM
    Biochem J; 1983 Dec; 215(3):441-5. PubMed ID: 6318726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prevention of carbon tetrachloride-induced liver necrosis by several amino acids.
    De Toranzo EG; De Ferreyra EC; De Fenos OM; Castro JA
    Br J Exp Pathol; 1983 Apr; 64(2):166-71. PubMed ID: 6849812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.