BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 33420926)

  • 21. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites.
    Jayavaradhan R; Pillis DM; Goodman M; Zhang F; Zhang Y; Andreassen PR; Malik P
    Nat Commun; 2019 Jun; 10(1):2866. PubMed ID: 31253785
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing.
    Zhang Y; Zhang Z; Ge W
    J Biol Chem; 2018 Apr; 293(17):6611-6622. PubMed ID: 29500194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Generation of genetically modified rat models via the CRISPR/Cas9 technology.
    Liu MZ; Wang LR; Li YM; Ma XY; Han HH; Li DL
    Yi Chuan; 2023 Jan; 45(1):78-87. PubMed ID: 36927640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR/Cas9 Genome Editing of Human-Induced Pluripotent Stem Cells Followed by Granulocytic Differentiation.
    Dannenmann B; Nasri M; Welte K; Skokowa J
    Methods Mol Biol; 2020; 2115():471-483. PubMed ID: 32006418
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Trichostatin A for Efficient CRISPR-Cas9 Gene Editing of Human Pluripotent Stem Cells.
    Molugu K; Khajanchi N; Lazzarotto CR; Tsai SQ; Saha K
    CRISPR J; 2023 Oct; 6(5):473-485. PubMed ID: 37676985
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient homology-directed gene editing by CRISPR/Cas9 in human stem and primary cells using tube electroporation.
    Xu X; Gao D; Wang P; Chen J; Ruan J; Xu J; Xia X
    Sci Rep; 2018 Aug; 8(1):11649. PubMed ID: 30076383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient Cas9-based Genome Editing Using CRISPR Analysis Webtools in Severe Early-onset-obesity Patient-derived iPSCs.
    Patel A; Iannello G; Diaz AG; Sirabella D; Thaker V; Corneo B
    Curr Protoc; 2022 Aug; 2(8):e519. PubMed ID: 35950852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bridging Gaps in HDR Improvement: The Role of MAD2L2, SCAI, and SCR7.
    Anuchina AA; Zaynitdinova MI; Demchenko AG; Evtushenko NA; Lavrov AV; Smirnikhina SA
    Int J Mol Sci; 2023 Apr; 24(7):. PubMed ID: 37047677
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52.
    Shao S; Ren C; Liu Z; Bai Y; Chen Z; Wei Z; Wang X; Zhang Z; Xu K
    Int J Biochem Cell Biol; 2017 Nov; 92():43-52. PubMed ID: 28928041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effective control of large deletions after double-strand breaks by homology-directed repair and dsODN insertion.
    Wen W; Quan ZJ; Li SA; Yang ZX; Fu YW; Zhang F; Li GH; Zhao M; Yin MD; Xu J; Zhang JP; Cheng T; Zhang XB
    Genome Biol; 2021 Aug; 22(1):236. PubMed ID: 34416913
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhancement of homology-directed repair with chromatin donor templates in cells.
    Cruz-Becerra G; Kadonaga JT
    Elife; 2020 Apr; 9():. PubMed ID: 32343230
    [TBL] [Abstract][Full Text] [Related]  

  • 33. FACS-Assisted CRISPR-Cas9 Genome Editing Facilitates Parkinson's Disease Modeling.
    Arias-Fuenzalida J; Jarazo J; Qing X; Walter J; Gomez-Giro G; Nickels SL; Zaehres H; Schöler HR; Schwamborn JC
    Stem Cell Reports; 2017 Nov; 9(5):1423-1431. PubMed ID: 28988985
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Systematic analysis of factors that improve homologous direct repair (HDR) efficiency in CRISPR/Cas9 technique.
    Di Stazio M; Foschi N; Athanasakis E; Gasparini P; d'Adamo AP
    PLoS One; 2021; 16(3):e0247603. PubMed ID: 33667229
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR/Cas9-Mediated Genome Editing to Generate Clonal iPSC Lines.
    Sanjurjo-Soriano C; Erkilic N; Mamaeva D; Kalatzis V
    Methods Mol Biol; 2022; 2454():589-606. PubMed ID: 33755901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CRISPR/Cas9-mediated one step bi-allelic change of genomic DNA in iPSCs and human RPE cells in vitro with dual antibiotic selection.
    Supharattanasitthi W; Carlsson E; Sharif U; Paraoan L
    Sci Rep; 2019 Jan; 9(1):174. PubMed ID: 30655567
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.
    Wang G; Yang L; Grishin D; Rios X; Ye LY; Hu Y; Li K; Zhang D; Church GM; Pu WT
    Nat Protoc; 2017 Jan; 12(1):88-103. PubMed ID: 27929521
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Precise homology-directed installation of large genomic edits in human cells with cleaving and nicking high-specificity Cas9 variants.
    Wang Q; Liu J; Janssen JM; Gonçalves MAFV
    Nucleic Acids Res; 2023 Apr; 51(7):3465-3484. PubMed ID: 36928106
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Histone deacetylase inhibitors selectively target homology dependent DNA repair defective cells and elevate non-homologous endjoining activity.
    Smith S; Fox J; Mejia M; Ruangpradit W; Saberi A; Kim S; Choi Y; Oh S; Wang Y; Choi K; Li L; Hendrickson EA; Takeda S; Muller M; Myung K
    PLoS One; 2014; 9(1):e87203. PubMed ID: 24466340
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Footprint-free gene mutation correction in induced pluripotent stem cell (iPSC) derived from recessive dystrophic epidermolysis bullosa (RDEB) using the CRISPR/Cas9 and piggyBac transposon system.
    Itoh M; Kawagoe S; Tamai K; Nakagawa H; Asahina A; Okano HJ
    J Dermatol Sci; 2020 Jun; 98(3):163-172. PubMed ID: 32376152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.