BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

780 related articles for article (PubMed ID: 33420984)

  • 21. [Application of smart responsive materials in phosphopeptide and glycopeptide enrichment].
    Zhao Y; Xu W; Jia Q
    Se Pu; 2022 Oct; 40(10):862-871. PubMed ID: 36222249
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Resolution Lysine Acetylome Profiling by Offline Fractionation and Immunoprecipitation.
    Giese J; Lassowskat I; Finkemeier I
    Methods Mol Biol; 2020; 2139():241-256. PubMed ID: 32462591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantification and Identification of Post-Translational Modifications Using Modern Proteomics Approaches.
    Holtz A; Basisty N; Schilling B
    Methods Mol Biol; 2021; 2228():225-235. PubMed ID: 33950494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phosphopeptide Enrichment by Immobilized Metal Affinity Chromatography.
    Thingholm TE; Larsen MR
    Methods Mol Biol; 2016; 1355():123-33. PubMed ID: 26584922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-Step Enrichment of N-Glycopeptides and Phosphopeptides with Novel Multifunctional Ti
    Zou X; Jie J; Yang B
    Anal Chem; 2017 Jul; 89(14):7520-7526. PubMed ID: 28609623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative site-specific analysis of protein glycosylation by LC-MS using different glycopeptide-enrichment strategies.
    Wohlgemuth J; Karas M; Eichhorn T; Hendriks R; Andrecht S
    Anal Biochem; 2009 Dec; 395(2):178-88. PubMed ID: 19699707
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of post-translationally modified peptides by hydrophilic interaction and reverse phase liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry.
    Hernandez-Hernandez O; Quintanilla-Lopez JE; Lebron-Aguilar R; Sanz ML; Moreno FJ
    J Chromatogr A; 2016 Jan; 1428():202-11. PubMed ID: 26278355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry.
    Aryal UK; Ross AR
    Rapid Commun Mass Spectrom; 2010 Jan; 24(2):219-31. PubMed ID: 20014058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enrichment and separation techniques for large-scale proteomics analysis of the protein post-translational modifications.
    Huang J; Wang F; Ye M; Zou H
    J Chromatogr A; 2014 Dec; 1372C():1-17. PubMed ID: 25465002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finding the same needles in the haystack? A comparison of phosphotyrosine peptides enriched by immuno-affinity precipitation and metal-based affinity chromatography.
    Di Palma S; Zoumaro-Djayoon A; Peng M; Post H; Preisinger C; Munoz J; Heck AJ
    J Proteomics; 2013 Oct; 91():331-7. PubMed ID: 23917254
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly efficient enrichment method for human plasma glycoproteome analyses using tandem hydrophilic interaction liquid chromatography workflow.
    Jie J; Liu D; Yang B; Zou X
    J Chromatogr A; 2020 Jan; 1610():460546. PubMed ID: 31570191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TiCPG - a strategy for the simultaneous enrichment of reversibly modified cysteine peptides, phosphopeptides, and sialylated N-Glycopeptides to study cytokines stimulated beta-cells.
    Huang H; Drici L; Lassen PS; Palmisano G; Larsen MR
    J Proteomics; 2023 Feb; 273():104796. PubMed ID: 36538968
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Offline High pH Reversed-Phase Peptide Fractionation for Deep Phosphoproteome Coverage.
    Batth TS; Olsen JV
    Methods Mol Biol; 2016; 1355():179-92. PubMed ID: 26584926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and synthesis of an immobilized metal affinity chromatography and metal oxide affinity chromatography hybrid material for improved phosphopeptide enrichment.
    Yang DS; Ding XY; Min HP; Li B; Su MX; Niu MM; Di B; Yan F
    J Chromatogr A; 2017 Jul; 1505():56-62. PubMed ID: 28533032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pilot investigation of magnetic nanoparticle-based immobilized metal affinity chromatography for efficient enrichment of phosphoproteoforms for mass spectrometry-based top-down proteomics.
    Wang Q; Fang F; Sun L
    Anal Bioanal Chem; 2023 Jul; 415(18):4521-4531. PubMed ID: 37017721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycine additive facilitates site-specific glycosylation profiling of biopharmaceuticals by ion-pairing hydrophilic interaction chromatography mass spectrometry.
    Zhao Y; Raidas S; Mao Y; Li N
    Anal Bioanal Chem; 2021 Feb; 413(5):1267-1277. PubMed ID: 33244686
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimized Enrichment of Phosphoproteomes by Fe-IMAC Column Chromatography.
    Ruprecht B; Koch H; Domasinska P; Frejno M; Kuster B; Lemeer S
    Methods Mol Biol; 2017; 1550():47-60. PubMed ID: 28188522
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uncommon posttranslational modifications in proteomics: ADP-ribosylation, tyrosine nitration, and tyrosine sulfation.
    Bashyal A; Brodbelt JS
    Mass Spectrom Rev; 2024; 43(2):289-326. PubMed ID: 36165040
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides.
    Thingholm TE; Jensen ON; Robinson PJ; Larsen MR
    Mol Cell Proteomics; 2008 Apr; 7(4):661-71. PubMed ID: 18039691
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.