BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33421000)

  • 21. Analysis of In Vivo Chromatin and Protein Interactions of Arabidopsis Transcript Elongation Factors.
    Pfab A; Antosz W; Holzinger P; Bruckmann A; Griesenbeck J; Grasser KD
    Methods Mol Biol; 2017; 1629():105-122. PubMed ID: 28623582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimized Detection of Protein-Protein and Protein-DNA Interactions, with Particular Application to Plant Telomeres.
    Schořová Š; Fajkus J; Schrumpfová PP
    Methods Mol Biol; 2020; 2175():139-167. PubMed ID: 32681489
    [TBL] [Abstract][Full Text] [Related]  

  • 23. μChIP-Seq for Genome-Wide Mapping of In Vivo TF-DNA Interactions in Arabidopsis Root Protoplasts.
    Para A; Li Y; Coruzzi GM
    Methods Mol Biol; 2018; 1761():249-261. PubMed ID: 29525963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromatin Immunoprecipitation Protocol for Histone Modifications and Protein-DNA Binding Analyses in Arabidopsis.
    You W; Pien S; Grossniklaus U
    Methods Mol Biol; 2017; 1456():1-13. PubMed ID: 27770353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome-Wide Profiling of Histone Modifications with ChIP-Seq.
    Ricci WA; Levin L; Zhang X
    Methods Mol Biol; 2020; 2072():101-117. PubMed ID: 31541441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reverse Chromatin Immunoprecipitation (R-ChIP) enables investigation of the upstream regulators of plant genes.
    Wen X; Wang J; Zhang D; Ding Y; Ji X; Tan Z; Wang Y
    Commun Biol; 2020 Dec; 3(1):770. PubMed ID: 33318632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Profiling Histone Modifications in Synchronized Floral Tissues for Quantitative Resolution of Chromatin and Transcriptome Dynamics.
    Engelhorn J; Wellmer F; Carles CC
    Methods Mol Biol; 2018; 1675():271-296. PubMed ID: 29052197
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of in vivo DNA-binding events of plant transcription factors by ChIP-seq: experimental protocol and computational analysis.
    van Mourik H; Muiño JM; Pajoro A; Angenent GC; Kaufmann K
    Methods Mol Biol; 2015; 1284():93-121. PubMed ID: 25757769
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide identification of transcription factor-binding sites in plants using chromatin immunoprecipitation followed by microarray (ChIP-chip) or sequencing (ChIP-seq).
    Zhu JY; Sun Y; Wang ZY
    Methods Mol Biol; 2012; 876():173-88. PubMed ID: 22576095
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chromatin immunoprecipitation to verify or to identify in vivo protein-DNA interactions.
    Zheng Y; Perry SE
    Methods Mol Biol; 2011; 754():277-91. PubMed ID: 21720959
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chromatin Immunoprecipitation Assay for the Identification of Arabidopsis Protein-DNA Interactions In Vivo.
    Komar DN; Mouriz A; Jarillo JA; Piñeiro M
    J Vis Exp; 2016 Jan; (107):e53422. PubMed ID: 26863263
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide mapping of protein-DNA interaction by chromatin immunoprecipitation and DNA microarray hybridization (ChIP-chip). Part B: ChIP-chip data analysis.
    Göbel U; Reimer J; Turck F
    Methods Mol Biol; 2010; 631():161-84. PubMed ID: 20204875
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genome-wide identification of RETINOBLASTOMA RELATED 1 binding sites in Arabidopsis reveals novel DNA damage regulators.
    Bouyer D; Heese M; Chen P; Harashima H; Roudier F; Grüttner C; Schnittger A
    PLoS Genet; 2018 Nov; 14(11):e1007797. PubMed ID: 30500810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of Interaction Between Long Noncoding RNAs and Protein by RNA Immunoprecipitation in Arabidopsis.
    Seo JS; Chua NH
    Methods Mol Biol; 2019; 1933():289-295. PubMed ID: 30945193
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detecting histone modifications in plants.
    Song J; Rutjens B; Dean C
    Methods Mol Biol; 2014; 1112():165-75. PubMed ID: 24478014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in
    Zubo YO; Blakley IC; Yamburenko MV; Worthen JM; Street IH; Franco-Zorrilla JM; Zhang W; Hill K; Raines T; Solano R; Kieber JJ; Loraine AE; Schaller GE
    Proc Natl Acad Sci U S A; 2017 Jul; 114(29):E5995-E6004. PubMed ID: 28673986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome-wide mapping of Arabidopsis thaliana origins of DNA replication and their associated epigenetic marks.
    Costas C; de la Paz Sanchez M; Stroud H; Yu Y; Oliveros JC; Feng S; Benguria A; López-Vidriero I; Zhang X; Solano R; Jacobsen SE; Gutierrez C
    Nat Struct Mol Biol; 2011 Mar; 18(3):395-400. PubMed ID: 21297636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chromatin Immunoprecipitation of Meiotically Expressed Proteins from Arabidopsis thaliana Flowers.
    Lambing C; Choi K; Blackwell AR; Henderson IR
    Methods Mol Biol; 2020; 2061():219-236. PubMed ID: 31583663
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A functional and evolutionary perspective on transcription factor binding in Arabidopsis thaliana.
    Heyndrickx KS; Van de Velde J; Wang C; Weigel D; Vandepoele K
    Plant Cell; 2014 Oct; 26(10):3894-910. PubMed ID: 25361952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MOBE-ChIP: Probing Cell Type-Specific Binding Through Large-Scale Chromatin Immunoprecipitation.
    Wang S; Lau OS
    Methods Mol Biol; 2018; 1689():167-176. PubMed ID: 29027174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.