BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33421013)

  • 1. Chloroplast Isolation and Enrichment of Low-Abundance Proteins by Affinity Chromatography for Identification in Complex Proteomes.
    Bayer RG; Stael S; Teige M
    Methods Mol Biol; 2021; 2261():535-547. PubMed ID: 33421013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chloroplast isolation and affinity chromatography for enrichment of low-abundant proteins in complex proteomes.
    Bayer RG; Stael S; Teige M
    Methods Mol Biol; 2015; 1295():211-23. PubMed ID: 25820724
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mining the soluble chloroplast proteome by affinity chromatography.
    Bayer RG; Stael S; Csaszar E; Teige M
    Proteomics; 2011 Apr; 11(7):1287-99. PubMed ID: 21365755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic analysis of chloroplast biogenesis (clb) mutants uncovers novel proteins potentially involved in the development of Arabidopsis thaliana chloroplasts.
    de Luna-Valdez LA; Martínez-Batallar AG; Hernández-Ortiz M; Encarnación-Guevara S; Ramos-Vega M; López-Bucio JS; León P; Guevara-García AA
    J Proteomics; 2014 Dec; 111():148-64. PubMed ID: 25154054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins.
    Ferro M; Brugière S; Salvi D; Seigneurin-Berny D; Court M; Moyet L; Ramus C; Miras S; Mellal M; Le Gall S; Kieffer-Jaquinod S; Bruley C; Garin J; Joyard J; Masselon C; Rolland N
    Mol Cell Proteomics; 2010 Jun; 9(6):1063-84. PubMed ID: 20061580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methodology: an optimized, high-yield tomato leaf chloroplast isolation and stroma extraction protocol for proteomics analyses and identification of chloroplast co-localizing proteins.
    Bhattacharya O; Ortiz I; Walling LL
    Plant Methods; 2020; 16():131. PubMed ID: 32983250
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subcellular Proteomics in Conifers: Purification of Nuclei and Chloroplast Proteomes.
    Lamelas L; García L; Cañal MJ; Meijón M
    Methods Mol Biol; 2020; 2139():69-78. PubMed ID: 32462578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of low abundance polyA-binding proteins in Arabidopsis chloroplast using polyA-affinity column.
    Ni RJ; Shen Z; Yang CP; Wu YD; Bi YD; Wang BC
    Mol Biol Rep; 2010 Feb; 37(2):637-41. PubMed ID: 19288221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro analysis of chloroplast protein import.
    Smith MD; Schnell DJ; Fitzpatrick L; Keegstra K
    Curr Protoc Cell Biol; 2003 Feb; Chapter 11():Unit11.16. PubMed ID: 18228418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of isotope-coded affinity tags (ICAT) to study organelle proteomes in Arabidopsis thaliana.
    Dunkley TP; Dupree P; Watson RB; Lilley KS
    Biochem Soc Trans; 2004 Jun; 32(Pt3):520-3. PubMed ID: 15157176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 'protein complex proteome' of chloroplasts in Arabidopsis thaliana.
    Behrens C; Blume C; Senkler M; Eubel H; Peterhänsel C; Braun HP
    J Proteomics; 2013 Oct; 91():73-83. PubMed ID: 23851315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The distinct functional roles of the inner and outer chloroplast envelope of Pea (Pisum sativum) as revealed by proteomic approaches.
    Gutierrez-Carbonell E; Takahashi D; Lattanzio G; Rodríguez-Celma J; Kehr J; Soll J; Philippar K; Uemura M; Abadía J; López-Millán AF
    J Proteome Res; 2014 Jun; 13(6):2941-53. PubMed ID: 24792535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the chloroplast proteome in arc mutants and identification of novel protein components associated with FtsZ2.
    Gargano D; Maple-Grødem J; Reisinger V; Eichacker LA; Møller SG
    Plant Mol Biol; 2013 Feb; 81(3):235-44. PubMed ID: 23225155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein identification and quantification by data-independent acquisition and multi-parallel collision-induced dissociation mass spectrometry (MS(E)) in the chloroplast stroma proteome.
    Helm S; Dobritzsch D; Rödiger A; Agne B; Baginsky S
    J Proteomics; 2014 Feb; 98():79-89. PubMed ID: 24361574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and quantitative proteomics investigations in Arabidopsis ggt1 mutant leaves reveal a role for the gamma-glutamyl cycle in plant's adaptation to environment.
    Tolin S; Arrigoni G; Trentin AR; Veljovic-Jovanovic S; Pivato M; Zechman B; Masi A
    Proteomics; 2013 Jun; 13(12-13):2031-45. PubMed ID: 23661340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surveying the Oligomeric State of Arabidopsis thaliana Chloroplasts.
    Lundquist PK; Mantegazza O; Stefanski A; Stühler K; Weber APM
    Mol Plant; 2017 Jan; 10(1):197-211. PubMed ID: 27794502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome.
    Zybailov B; Rutschow H; Friso G; Rudella A; Emanuelsson O; Sun Q; van Wijk KJ
    PLoS One; 2008 Apr; 3(4):e1994. PubMed ID: 18431481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant organelle proteomics.
    Lilley KS; Dupree P
    Curr Opin Plant Biol; 2007 Dec; 10(6):594-9. PubMed ID: 17913569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Arabidopsis soluble chloroplast proteomic analysis reveals the participation of the Executer pathway in response to increased light conditions.
    Uberegui E; Hall M; Lorenzo Ó; Schröder WP; Balsera M
    J Exp Bot; 2015 Apr; 66(7):2067-77. PubMed ID: 25740923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative proteomics of a chloroplast SRP54 sorting mutant and its genetic interactions with CLPC1 in Arabidopsis.
    Rutschow H; Ytterberg AJ; Friso G; Nilsson R; van Wijk KJ
    Plant Physiol; 2008 Sep; 148(1):156-75. PubMed ID: 18633119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.