These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 33421152)
21. The consequences of photoperiodism for organisms in new climates. Grevstad FS; Coop LB Ecol Appl; 2015 Sep; 25(6):1506-17. PubMed ID: 26552260 [TBL] [Abstract][Full Text] [Related]
22. Estimating the ability of plants to plastically track temperature-mediated shifts in the spring phenological optimum. Tansey CJ; Hadfield JD; Phillimore AB Glob Chang Biol; 2017 Aug; 23(8):3321-3334. PubMed ID: 28185374 [TBL] [Abstract][Full Text] [Related]
23. Grasshopper species' seasonal timing underlies shifts in phenological overlap in response to climate gradients, variability and change. Buckley LB; Graham SI; Nufio CR J Anim Ecol; 2021 May; 90(5):1252-1263. PubMed ID: 33630307 [TBL] [Abstract][Full Text] [Related]
24. Late spring freezes coupled with warming winters alter temperate tree phenology and growth. Chamberlain CJ; Wolkovich EM New Phytol; 2021 Aug; 231(3):987-995. PubMed ID: 33932291 [TBL] [Abstract][Full Text] [Related]
25. Spring wildflower phenology and pollinator activity respond similarly to climatic variation in an eastern hardwood forest. Sevenello M; Sargent RD; Forrest JRK Oecologia; 2020 Jun; 193(2):475-488. PubMed ID: 32462408 [TBL] [Abstract][Full Text] [Related]
26. Effects of temperature and photoperiod on the seasonal timing of Western honey bee colonies and an early spring flowering plant. Villagomez GN; Nürnberger F; Requier F; Schiele S; Steffan-Dewenter I Ecol Evol; 2021 Jun; 11(12):7834-7849. PubMed ID: 34188855 [TBL] [Abstract][Full Text] [Related]
27. Plant phenology shifts under climate warming: a systematic review of recent scientific literature. Hassan T; Gulzar R; Hamid M; Ahmad R; Waza SA; Khuroo AA Environ Monit Assess; 2023 Dec; 196(1):36. PubMed ID: 38093150 [TBL] [Abstract][Full Text] [Related]
28. Photoperiod cues and patterns of genetic variation limit phenological responses to climate change in warm parts of species' range: Modeling diameter-growth cessation in coast Douglas-fir. Ford KR; Harrington CA; St Clair JB Glob Chang Biol; 2017 Aug; 23(8):3348-3362. PubMed ID: 28303652 [TBL] [Abstract][Full Text] [Related]
30. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. Fu YH; Piao S; Zhou X; Geng X; Hao F; Vitasse Y; Janssens IA Glob Chang Biol; 2019 May; 25(5):1696-1703. PubMed ID: 30779408 [TBL] [Abstract][Full Text] [Related]
31. Impact of climate change on voltinism and prospective diapause induction of a global pest insect--Cydia pomonella (L.). Stoeckli S; Hirschi M; Spirig C; Calanca P; Rotach MW; Samietz J PLoS One; 2012; 7(4):e35723. PubMed ID: 22539997 [TBL] [Abstract][Full Text] [Related]
32. Both life-history plasticity and local adaptation will shape range-wide responses to climate warming in the tundra plant Silene acaulis. Peterson ML; Doak DF; Morris WF Glob Chang Biol; 2018 Apr; 24(4):1614-1625. PubMed ID: 29155464 [TBL] [Abstract][Full Text] [Related]
33. Phenological responses to multiple environmental drivers under climate change: insights from a long-term observational study and a manipulative field experiment. Wadgymar SM; Ogilvie JE; Inouye DW; Weis AE; Anderson JT New Phytol; 2018 Apr; 218(2):517-529. PubMed ID: 29451307 [TBL] [Abstract][Full Text] [Related]
34. Phenological sequences: how early-season events define those that follow. Ettinger AK; Gee S; Wolkovich EM Am J Bot; 2018 Oct; 105(10):1771-1780. PubMed ID: 30324664 [TBL] [Abstract][Full Text] [Related]
35. Simulating the onset of spring vegetation growth across the Northern Hemisphere. Liu Q; Fu YH; Liu Y; Janssens IA; Piao S Glob Chang Biol; 2018 Mar; 24(3):1342-1356. PubMed ID: 29055157 [TBL] [Abstract][Full Text] [Related]
36. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538 [TBL] [Abstract][Full Text] [Related]
38. Region-specific phenological sensitivities and rates of climate warming generate divergent temporal shifts in flowering date across a species' range. Love NLR; Mazer SJ Am J Bot; 2021 Oct; 108(10):1873-1888. PubMed ID: 34642935 [TBL] [Abstract][Full Text] [Related]
39. Common garden comparison of the leaf-out phenology of woody species from different native climates, combined with herbarium records, forecasts long-term change. Zohner CM; Renner SS Ecol Lett; 2014 Aug; 17(8):1016-25. PubMed ID: 24943497 [TBL] [Abstract][Full Text] [Related]
40. Shifts in the temperature-sensitive periods for spring phenology in European beech and pedunculate oak clones across latitudes and over recent decades. Wenden B; Mariadassou M; Chmielewski FM; Vitasse Y Glob Chang Biol; 2020 Mar; 26(3):1808-1819. PubMed ID: 31724292 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]