These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 33421152)
41. Linking altitudinal gradients and temperature responses of plant phenology in the Bavarian Alps. Cornelius C; Estrella N; Franz H; Menzel A Plant Biol (Stuttg); 2013 Jan; 15 Suppl 1():57-69. PubMed ID: 22686251 [TBL] [Abstract][Full Text] [Related]
42. Passerines may be sufficiently plastic to track temperature-mediated shifts in optimum lay date. Phillimore AB; Leech DI; Pearce-Higgins JW; Hadfield JD Glob Chang Biol; 2016 Oct; 22(10):3259-72. PubMed ID: 27173755 [TBL] [Abstract][Full Text] [Related]
43. Species-specific phenological trends in shallow Pampean lakes' (Argentina) zooplankton driven by contemporary climate change in the Southern Hemisphere. Diovisalvi N; Odriozola M; Garcia de Souza J; Rojas Molina F; Fontanarrosa MS; Escaray R; Bustingorry J; Sanzano P; Grosman F; Zagarese H Glob Chang Biol; 2018 Nov; 24(11):5137-5148. PubMed ID: 30112780 [TBL] [Abstract][Full Text] [Related]
44. Long-term shifts in the phenology of rare and endemic Rocky Mountain plants. Munson SM; Sher AA Am J Bot; 2015 Aug; 102(8):1268-76. PubMed ID: 26290550 [TBL] [Abstract][Full Text] [Related]
45. Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013. Liu L; Zhang X; Donnelly A; Liu X Int J Biometeorol; 2016 Oct; 60(10):1563-1575. PubMed ID: 26936843 [TBL] [Abstract][Full Text] [Related]
46. Daylength predominates the bud growth initiation of winter deciduous forest trees in the monsoon region of China. Lang W; Qian S; Chen X Front Plant Sci; 2023; 14():1327509. PubMed ID: 38273945 [TBL] [Abstract][Full Text] [Related]
47. Spring- and fall-flowering species show diverging phenological responses to climate in the Southeast USA. Pearson KD Int J Biometeorol; 2019 Apr; 63(4):481-492. PubMed ID: 30734127 [TBL] [Abstract][Full Text] [Related]
48. The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Keenan TF; Richardson AD Glob Chang Biol; 2015 Jul; 21(7):2634-2641. PubMed ID: 25662890 [TBL] [Abstract][Full Text] [Related]
50. Climate change reshapes the drivers of false spring risk across European trees. Chamberlain CJ; Cook BI; Morales-Castilla I; Wolkovich EM New Phytol; 2021 Jan; 229(1):323-334. PubMed ID: 32767753 [TBL] [Abstract][Full Text] [Related]
51. Will phenotypic plasticity affecting flowering phenology keep pace with climate change? Richardson BA; Chaney L; Shaw NL; Still SM Glob Chang Biol; 2017 Jun; 23(6):2499-2508. PubMed ID: 27739159 [TBL] [Abstract][Full Text] [Related]
52. Environmental controls on the phenology of moths: predicting plasticity and constraint under climate change. Valtonen A; Ayres MP; Roininen H; Pöyry J; Leinonen R Oecologia; 2011 Jan; 165(1):237-48. PubMed ID: 20882390 [TBL] [Abstract][Full Text] [Related]
53. A critical thermal transition driving spring phenology of Northern Hemisphere conifers. Huang JG; Zhang Y; Wang M; Yu X; Deslauriers A; Fonti P; Liang E; Mäkinen H; Oberhuber W; Rathgeber CBK; Tognetti R; Treml V; Yang B; Zhai L; Zhang JL; Antonucci S; Bergeron Y; Camarero JJ; Campelo F; Čufar K; Cuny HE; De Luis M; Fajstavr M; Giovannelli A; Gričar J; Gruber A; Gryc V; Güney A; Jyske T; Kašpar J; King G; Krause C; Lemay A; Liu F; Lombardi F; Del Castillo EM; Morin H; Nabais C; Nöjd P; Peters RL; Prislan P; Saracino A; Shishov VV; Swidrak I; Vavrčík H; Vieira J; Zeng Q; Liu Y; Rossi S Glob Chang Biol; 2023 Mar; 29(6):1606-1617. PubMed ID: 36451586 [TBL] [Abstract][Full Text] [Related]
54. Divergent responses to spring and winter warming drive community level flowering trends. Cook BI; Wolkovich EM; Parmesan C Proc Natl Acad Sci U S A; 2012 Jun; 109(23):9000-5. PubMed ID: 22615406 [TBL] [Abstract][Full Text] [Related]
55. CO Tedla B; Dang QL; Inoue S Front Plant Sci; 2020; 11():506. PubMed ID: 32411171 [TBL] [Abstract][Full Text] [Related]
56. Spatial Difference of Interactive Effect Between Temperature and Daylength on Ginkgo Budburst. Wu Z; Wang S; Fu YH; Gong Y; Lin CF; Zhao YP; Prevéy JS; Zohner C Front Plant Sci; 2022; 13():887226. PubMed ID: 35620689 [TBL] [Abstract][Full Text] [Related]
57. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Fu YH; Piao S; Delpierre N; Hao F; Hänninen H; Liu Y; Sun W; Janssens IA; Campioli M Glob Chang Biol; 2018 May; 24(5):2159-2168. PubMed ID: 29245174 [TBL] [Abstract][Full Text] [Related]
58. Automated data-intensive forecasting of plant phenology throughout the United States. Taylor SD; White EP Ecol Appl; 2020 Jan; 30(1):e02025. PubMed ID: 31630468 [TBL] [Abstract][Full Text] [Related]
59. Long-term changes in the impacts of global warming on leaf phenology of four temperate tree species. Chen L; Huang JG; Ma Q; Hänninen H; Tremblay F; Bergeron Y Glob Chang Biol; 2019 Mar; 25(3):997-1004. PubMed ID: 30358002 [TBL] [Abstract][Full Text] [Related]
60. [Impacts of future climate change on spring phenology stages of rubber tree in Hainan, China]. Li N; Bai R; Wu L; Li W; Chen M; Chen X; Fan CH; Yang GS Ying Yong Sheng Tai Xue Bao; 2020 Apr; 31(4):1241-1249. PubMed ID: 32530199 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]