These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 33421380)

  • 1. Binding and crossing: Methods for the characterization of membrane-active peptides interactions with membranes at the molecular level.
    Sachon E; Walrant A; Sagan S; Cribier S; Rodriguez N
    Arch Biochem Biophys; 2021 Mar; 699():108751. PubMed ID: 33421380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane-active peptides: binding, translocation, and flux in lipid vesicles.
    Almeida PF
    Biochim Biophys Acta; 2014 Sep; 1838(9):2216-27. PubMed ID: 24769436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biophysical properties of membrane-active peptides based on micelle modeling: a case study of cell-penetrating and antimicrobial peptides.
    Wang Q; Hong G; Johnson GR; Pachter R; Cheung MS
    J Phys Chem B; 2010 Nov; 114(43):13726-35. PubMed ID: 20939546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
    Walrant A; Cardon S; Burlina F; Sagan S
    Acc Chem Res; 2017 Dec; 50(12):2968-2975. PubMed ID: 29172443
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane Adsorption Enhances Translocation of Antimicrobial Peptide Buforin 2.
    Khodam Hazrati M; Vácha R
    J Phys Chem B; 2024 Sep; 128(35):8469-8476. PubMed ID: 39194157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic Force Microscopy Study of the Interactions of Indolicidin with Model Membranes and DNA.
    Fojan P; Gurevich L
    Methods Mol Biol; 2017; 1548():201-215. PubMed ID: 28013506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The thin line between cell-penetrating and antimicrobial peptides: the case of Pep-1 and Pep-1-K.
    Bobone S; Piazzon A; Orioni B; Pedersen JZ; Nan YH; Hahm KS; Shin SY; Stella L
    J Pept Sci; 2011 May; 17(5):335-41. PubMed ID: 21294230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the Effects of Membrane-Interacting Peptides on Membrane Integrity.
    Wimley WC
    Methods Mol Biol; 2015; 1324():89-106. PubMed ID: 26202264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cationic membrane peptides: atomic-level insight of structure-activity relationships from solid-state NMR.
    Su Y; Li S; Hong M
    Amino Acids; 2013 Mar; 44(3):821-33. PubMed ID: 23108593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature-dependent transmembrane insertion of the amphiphilic peptide PGLa in lipid bilayers observed by solid state 19F NMR spectroscopy.
    Afonin S; Grage SL; Ieronimo M; Wadhwani P; Ulrich AS
    J Am Chem Soc; 2008 Dec; 130(49):16512-4. PubMed ID: 19049452
    [No Abstract]   [Full Text] [Related]  

  • 12. Using Confocal Microscopy and Computational Modeling to Investigate the Cell-Penetrating Properties of Antimicrobial Peptides.
    Del Rio G; Klipp E; Herrmann A
    Methods Mol Biol; 2017; 1548():191-199. PubMed ID: 28013505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a possible uptake mechanism of selective antibacterial peptides.
    Polanco C; Samaniego JL; Castañón-González JA; Buhse T; Sordo ML
    Acta Biochim Pol; 2013; 60(4):629-33. PubMed ID: 24432312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational Changes of Anoplin, W-MreB
    Wojciechowska M; Miszkiewicz J; Trylska J
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33352981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution NMR studies of cell-penetrating peptides in model membrane systems.
    Mäler L
    Adv Drug Deliv Rev; 2013 Jul; 65(8):1002-11. PubMed ID: 23137785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Challenges and Methods for the Study of CPP Translocation Mechanisms.
    Walrant A; Illien F; Sagan S; Rodriguez N
    Methods Mol Biol; 2022; 2383():143-152. PubMed ID: 34766287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and use of model membranes to study biomolecular interactions using complementary surface-sensitive techniques.
    Clifton LA; Campbell RA; Sebastiani F; Campos-Terán J; Gonzalez-Martinez JF; Björklund S; Sotres J; Cárdenas M
    Adv Colloid Interface Sci; 2020 Mar; 277():102118. PubMed ID: 32044469
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thermodynamic approach to the mechanism of cell-penetrating peptides in model membranes.
    McKeown AN; Naro JL; Huskins LJ; Almeida PF
    Biochemistry; 2011 Feb; 50(5):654-62. PubMed ID: 21166473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous membrane interaction of amphipathic peptide monomers, self-aggregates and cargo complexes detected by fluorescence correlation spectroscopy.
    Vasconcelos L; Lehto T; Madani F; Radoi V; Hällbrink M; Vukojević V; Langel Ü
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):491-504. PubMed ID: 28962904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers.
    Bennett WF; Hong CK; Wang Y; Tieleman DP
    J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.