These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33421431)

  • 1. Proteodynamics and aging of eukaryotic cells.
    Witkowski JM; Bryl E; Fulop T
    Mech Ageing Dev; 2021 Mar; 194():111430. PubMed ID: 33421431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteodynamics in aging human T cells - The need for its comprehensive study to understand the fine regulation of T lymphocyte functions.
    Witkowski JM; Mikosik A; Bryl E; Fulop T
    Exp Gerontol; 2018 Jul; 107():161-168. PubMed ID: 29038026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The homeodomain-interacting protein kinase HPK-1 preserves protein homeostasis and longevity through master regulatory control of the HSF-1 chaperone network and TORC1-restricted autophagy in Caenorhabditis elegans.
    Das R; Melo JA; Thondamal M; Morton EA; Cornwell AB; Crick B; Kim JH; Swartz EW; Lamitina T; Douglas PM; Samuelson AV
    PLoS Genet; 2017 Oct; 13(10):e1007038. PubMed ID: 29036198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longevity, Centenarians and Modified Cellular Proteodynamics.
    Frankowska N; Bryl E; Fulop T; Witkowski JM
    Int J Mol Sci; 2023 Feb; 24(3):. PubMed ID: 36769212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Turnover in Aging and Longevity.
    Basisty N; Meyer JG; Schilling B
    Proteomics; 2018 Mar; 18(5-6):e1700108. PubMed ID: 29453826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Chaperones and Proteolytic Machineries Regulate Protein Homeostasis In Aging Cells.
    Margulis B; Tsimokha A; Zubova S; Guzhova I
    Cells; 2020 May; 9(5):. PubMed ID: 32456366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging as an event of proteostasis collapse.
    Taylor RC; Dillin A
    Cold Spring Harb Perspect Biol; 2011 May; 3(5):. PubMed ID: 21441594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteostasis-associated aging: lessons from a Drosophila model.
    Yu G; Hyun S
    Genes Genomics; 2021 Jan; 43(1):1-9. PubMed ID: 33111208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome Oxidative Modifications and Impairment of Specific Metabolic Pathways During Cellular Senescence and Aging.
    Hamon MP; Ahmed EK; Baraibar MA; Friguet B
    Proteomics; 2020 Mar; 20(5-6):e1800421. PubMed ID: 31507063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy.
    Tsakiri EN; Gumeni S; Vougas K; Pendin D; Papassideri I; Daga A; Gorgoulis V; Juhász G; Scorrano L; Trougakos IP
    Autophagy; 2019 Oct; 15(10):1757-1773. PubMed ID: 31002009
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteostatic stress as a nodal hallmark of replicative aging.
    Moreno DF; Aldea M
    Exp Cell Res; 2020 Sep; 394(2):112163. PubMed ID: 32640194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-enzymatic post-translational protein modifications and proteostasis network deregulation in carcinogenesis.
    Trougakos IP; Sesti F; Tsakiri E; Gorgoulis VG
    J Proteomics; 2013 Oct; 92():274-98. PubMed ID: 23500136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein aggregates and proteostasis in aging: Amylin and β-cell function.
    Press M; Jung T; König J; Grune T; Höhn A
    Mech Ageing Dev; 2019 Jan; 177():46-54. PubMed ID: 29580826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy and the hallmarks of aging.
    Kaushik S; Tasset I; Arias E; Pampliega O; Wong E; Martinez-Vicente M; Cuervo AM
    Ageing Res Rev; 2021 Dec; 72():101468. PubMed ID: 34563704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of "Old Proteins" and the Critical Need for MS-based Protein Turnover Measurements in Aging and Longevity.
    Basisty N; Holtz A; Schilling B
    Proteomics; 2020 Mar; 20(5-6):e1800403. PubMed ID: 31408259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mitochondrial FUNDC1/HSC70 interaction organizes the proteostatic stress response at the risk of cell morbidity.
    Li Y; Xue Y; Xu X; Wang G; Liu Y; Wu H; Li W; Wang Y; Chen Z; Zhang W; Zhu Y; Ji W; Xu T; Liu L; Chen Q
    EMBO J; 2019 Feb; 38(3):. PubMed ID: 30591555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-translational modification of cellular proteins by ubiquitin and ubiquitin-like molecules: role in cellular senescence and aging.
    Grillari J; Grillari-Voglauer R; Jansen-Dürr P
    Adv Exp Med Biol; 2010; 694():172-96. PubMed ID: 20886764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteostasis, oxidative stress and aging.
    Korovila I; Hugo M; Castro JP; Weber D; Höhn A; Grune T; Jung T
    Redox Biol; 2017 Oct; 13():550-567. PubMed ID: 28763764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mTOR as a central regulator of lifespan and aging.
    Papadopoli D; Boulay K; Kazak L; Pollak M; Mallette FA; Topisirovic I; Hulea L
    F1000Res; 2019; 8():. PubMed ID: 31316753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordinate regulation of the senescent state by selective autophagy.
    Lee Y; Kim J; Kim MS; Kwon Y; Shin S; Yi H; Kim H; Chang MJ; Chang CB; Kang SB; Kim VN; Kim JH; Kim JS; Elledge SJ; Kang C
    Dev Cell; 2021 May; 56(10):1512-1525.e7. PubMed ID: 33915088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.