These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 33421549)
1. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints. Feng H; Zhang L; Li S; Liu L; Yang T; Yang P; Zhao J; Arkin IT; Liu H Toxicol Lett; 2021 Apr; 340():4-14. PubMed ID: 33421549 [TBL] [Abstract][Full Text] [Related]
2. Prediction of the Blood-Brain Barrier (BBB) Permeability of Chemicals Based on Machine-Learning and Ensemble Methods. Liu L; Zhang L; Feng H; Li S; Liu M; Zhao J; Liu H Chem Res Toxicol; 2021 Jun; 34(6):1456-1467. PubMed ID: 34047182 [TBL] [Abstract][Full Text] [Related]
3. QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods. Ai H; Wu X; Zhang L; Qi M; Zhao Y; Zhao Q; Zhao J; Liu H Ecotoxicol Environ Saf; 2019 Sep; 179():71-78. PubMed ID: 31026752 [TBL] [Abstract][Full Text] [Related]
4. In silico prediction of chemical reproductive toxicity using machine learning. Jiang C; Yang H; Di P; Li W; Tang Y; Liu G J Appl Toxicol; 2019 Jun; 39(6):844-854. PubMed ID: 30687929 [TBL] [Abstract][Full Text] [Related]
5. Predicting Drug-Induced Liver Injury Using Ensemble Learning Methods and Molecular Fingerprints. Ai H; Chen W; Zhang L; Huang L; Yin Z; Hu H; Zhao Q; Zhao J; Liu H Toxicol Sci; 2018 Sep; 165(1):100-107. PubMed ID: 29788510 [TBL] [Abstract][Full Text] [Related]
6. Prediction of hERG potassium channel blockage using ensemble learning methods and molecular fingerprints. Liu M; Zhang L; Li S; Yang T; Liu L; Zhao J; Liu H Toxicol Lett; 2020 Oct; 332():88-96. PubMed ID: 32629073 [TBL] [Abstract][Full Text] [Related]
7. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches. Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046 [TBL] [Abstract][Full Text] [Related]
8. Predicting the cytotoxicity of chemicals using ensemble learning methods and molecular fingerprints. Yin Z; Ai H; Zhang L; Ren G; Wang Y; Zhao Q; Liu H J Appl Toxicol; 2019 Oct; 39(10):1366-1377. PubMed ID: 30763981 [TBL] [Abstract][Full Text] [Related]
9. CarcinoPred-EL: Novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods. Zhang L; Ai H; Chen W; Yin Z; Hu H; Zhu J; Zhao J; Zhao Q; Liu H Sci Rep; 2017 May; 7(1):2118. PubMed ID: 28522849 [TBL] [Abstract][Full Text] [Related]
10. Ensemble multiclassification model for predicting developmental toxicity in zebrafish. Liu G; Li X; Guo Y; Zhang L; Liu H; Ai H Aquat Toxicol; 2024 Jun; 271():106936. PubMed ID: 38723470 [TBL] [Abstract][Full Text] [Related]
11. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity. Lei T; Chen F; Liu H; Sun H; Kang Y; Li D; Li Y; Hou T Mol Pharm; 2017 Jul; 14(7):2407-2421. PubMed ID: 28595388 [TBL] [Abstract][Full Text] [Related]
12. Ensemble multiclassification model for aquatic toxicity of organic compounds. Li X; Liu G; Wang Z; Zhang L; Liu H; Ai H Aquat Toxicol; 2023 Feb; 255():106379. PubMed ID: 36587517 [TBL] [Abstract][Full Text] [Related]
14. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches. Singh KP; Gupta S Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095 [TBL] [Abstract][Full Text] [Related]
15. Ensemble Models Based on QuBiLS-MAS Features and Shallow Learning for the Prediction of Drug-Induced Liver Toxicity: Improving Deep Learning and Traditional Approaches. Mora JR; Marrero-Ponce Y; GarcĂa-Jacas CR; Suarez Causado A Chem Res Toxicol; 2020 Jul; 33(7):1855-1873. PubMed ID: 32406679 [TBL] [Abstract][Full Text] [Related]
16. In Silico Prediction of Chemical-Induced Hepatocellular Hypertrophy Using Molecular Descriptors. Ambe K; Ishihara K; Ochibe T; Ohya K; Tamura S; Inoue K; Yoshida M; Tohkin M Toxicol Sci; 2018 Apr; 162(2):667-675. PubMed ID: 29309657 [TBL] [Abstract][Full Text] [Related]
17. Comparing Multiple Machine Learning Algorithms and Metrics for Estrogen Receptor Binding Prediction. Russo DP; Zorn KM; Clark AM; Zhu H; Ekins S Mol Pharm; 2018 Oct; 15(10):4361-4370. PubMed ID: 30114914 [TBL] [Abstract][Full Text] [Related]
18. Predicting Health Material Accessibility: Development of Machine Learning Algorithms. Ji M; Liu Y; Hao T JMIR Med Inform; 2021 Sep; 9(9):e29175. PubMed ID: 34468321 [TBL] [Abstract][Full Text] [Related]
19. Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Huang JC; Tsai YC; Wu PY; Lien YH; Chien CY; Kuo CF; Hung JF; Chen SC; Kuo CH Comput Methods Programs Biomed; 2020 Oct; 195():105536. PubMed ID: 32485511 [TBL] [Abstract][Full Text] [Related]
20. Machine learning based readmission and mortality prediction in heart failure patients. Sabouri M; Rajabi AB; Hajianfar G; Gharibi O; Mohebi M; Avval AH; Naderi N; Shiri I Sci Rep; 2023 Oct; 13(1):18671. PubMed ID: 37907666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]