BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33421710)

  • 1. In vitro bone metastasis dwelling in a 3D bioengineered niche.
    Han W; El Botty R; Montaudon E; Malaquin L; Deschaseaux F; Espagnolle N; Marangoni E; Cottu P; Zalcman G; Parrini MC; Assayag F; Sensebe L; Silberzan P; Vincent-Salomon A; Dutertre G; Roman-Roman S; Descroix S; Camonis J
    Biomaterials; 2021 Feb; 269():120624. PubMed ID: 33421710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microenvironment engineering of osteoblastic bone metastases reveals osteomimicry of patient-derived prostate cancer xenografts.
    Shokoohmand A; Ren J; Baldwin J; Atack A; Shafiee A; Theodoropoulos C; Wille ML; Tran PA; Bray LJ; Smith D; Chetty N; Pollock PM; Hutmacher DW; Clements JA; Williams ED; Bock N
    Biomaterials; 2019 Nov; 220():119402. PubMed ID: 31400612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis.
    Angeloni V; Contessi N; De Marco C; Bertoldi S; Tanzi MC; Daidone MG; Farè S
    Acta Biomater; 2017 Nov; 63():306-316. PubMed ID: 28927931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D printed nanocomposite matrix for the study of breast cancer bone metastasis.
    Zhu W; Holmes B; Glazer RI; Zhang LG
    Nanomedicine; 2016 Jan; 12(1):69-79. PubMed ID: 26472048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of clinically relevant in vivo metastasis models using human bone discs and breast cancer patient-derived xenografts.
    Lefley D; Howard F; Arshad F; Bradbury S; Brown H; Tulotta C; Eyre R; Alférez D; Wilkinson JM; Holen I; Clarke RB; Ottewell P
    Breast Cancer Res; 2019 Nov; 21(1):130. PubMed ID: 31783893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-engineered 3D models for elucidating primary and metastatic bone cancer progression.
    González Díaz EC; Sinha S; Avedian RS; Yang F
    Acta Biomater; 2019 Nov; 99():18-32. PubMed ID: 31419564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breast cancer bone metastases are attenuated in a Tgif1-deficient bone microenvironment.
    Haider MT; Saito H; Zarrer J; Uzhunnumpuram K; Nagarajan S; Kari V; Horn-Glander M; Werner S; Hesse E; Taipaleenmäki H
    Breast Cancer Res; 2020 Apr; 22(1):34. PubMed ID: 32272947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct crosstalk between cancer and osteoblast lineage cells fuels metastatic growth in bone via auto-amplification of IL-6 and RANKL signaling pathways.
    Zheng Y; Chow SO; Boernert K; Basel D; Mikuscheva A; Kim S; Fong-Yee C; Trivedi T; Buttgereit F; Sutherland RL; Dunstan CR; Zhou H; Seibel MJ
    J Bone Miner Res; 2014 Sep; 29(9):1938-49. PubMed ID: 24676805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic strategies to recapitulate organ specific microenvironments for studying breast cancer metastasis.
    Narkhede AA; Shevde LA; Rao SS
    Int J Cancer; 2017 Sep; 141(6):1091-1109. PubMed ID: 28439901
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional regulation of tenascin-W by TGF-beta signaling in the bone metastatic niche of breast cancer cells.
    Chiovaro F; Martina E; Bottos A; Scherberich A; Hynes NE; Chiquet-Ehrismann R
    Int J Cancer; 2015 Oct; 137(8):1842-54. PubMed ID: 25868708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Spontaneous 3D Bone-On-a-Chip for Bone Metastasis Study of Breast Cancer Cells.
    Hao S; Ha L; Cheng G; Wan Y; Xia Y; Sosnoski DM; Mastro AM; Zheng SY
    Small; 2018 Mar; 14(12):e1702787. PubMed ID: 29399951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioengineered Microtissue Models of the Human Bone Metastatic Microenvironment: A Novel In Vitro Theranostics Platform for Cancer Research.
    Bock N
    Methods Mol Biol; 2019; 2054():23-57. PubMed ID: 31482446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-engineered nanoclay-based 3D in vitro breast cancer model for studying breast cancer metastasis to bone.
    Kar S; Molla MS; Katti DR; Katti KS
    J Tissue Eng Regen Med; 2019 Feb; 13(2):119-130. PubMed ID: 30466156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering a Novel 3D Printed Vascularized Tissue Model for Investigating Breast Cancer Metastasis to Bone.
    Cui H; Esworthy T; Zhou X; Hann SY; Glazer RI; Li R; Zhang LG
    Adv Healthc Mater; 2020 Aug; 9(15):e1900924. PubMed ID: 31846231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Animal models for breast cancer metastasis to bone: opportunities and limitations.
    Horas K; Zheng Y; Zhou H; Seibel MJ
    Cancer Invest; 2015; 33(9):459-68. PubMed ID: 26305725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions.
    Fong EL; Wan X; Yang J; Morgado M; Mikos AG; Harrington DA; Navone NM; Farach-Carson MC
    Biomaterials; 2016 Jan; 77():164-72. PubMed ID: 26599623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. microRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11.
    Cai WL; Huang WD; Li B; Chen TR; Li ZX; Zhao CL; Li HY; Wu YM; Yan WJ; Xiao JR
    Mol Cancer; 2018 Jan; 17(1):9. PubMed ID: 29343249
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneity of tumor cells in the bone microenvironment: Mechanisms and therapeutic targets for bone metastasis of prostate or breast cancer.
    Futakuchi M; Fukamachi K; Suzui M
    Adv Drug Deliv Rev; 2016 Apr; 99(Pt B):206-211. PubMed ID: 26656603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the breast cancer bone metastatic niche in complex three-dimensional cocultures.
    Marlow R; Dontu G
    Methods Mol Biol; 2015; 1293():213-20. PubMed ID: 26040690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hypoxic ticket to the bone metastatic niche.
    Vanharanta S
    Breast Cancer Res; 2015 Sep; 17(1):122. PubMed ID: 26337273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.