BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33421829)

  • 1. Enhancement of biodiesel yield and characteristics through in-situ solvo-thermal co-transesterification of wet microalgae with spent coffee grounds.
    Abomohra AE; Zheng X; Wang Q; Huang J; Ebaid R
    Bioresour Technol; 2021 Mar; 323():124640. PubMed ID: 33421829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solvo-thermal in situ transesterification of wet spent coffee grounds for the production of biodiesel.
    Park J; Kim B; Son J; Lee JW
    Bioresour Technol; 2018 Feb; 249():494-500. PubMed ID: 29073560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wet in situ transesterification of spent coffee grounds with supercritical methanol for the production of biodiesel.
    Son J; Kim B; Park J; Yang J; Lee JW
    Bioresour Technol; 2018 Jul; 259():465-468. PubMed ID: 29573886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production.
    Park J; Kim B; Lee JW
    Bioresour Technol; 2016 Dec; 221():55-60. PubMed ID: 27639224
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using switchable solvent as a solvent and catalyst for in situ transesterification of spent coffee grounds for biodiesel synthesis.
    Nguyen HC; Nguyen ML; Wang FM; Liang SH; Bui TL; Ha HH; Su CH
    Bioresour Technol; 2019 Oct; 289():121770. PubMed ID: 31320231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodiesel production from wet microalgae feedstock using sequential wet extraction/transesterification and direct transesterification processes.
    Chen CL; Huang CC; Ho KC; Hsiao PX; Wu MS; Chang JS
    Bioresour Technol; 2015 Oct; 194():179-86. PubMed ID: 26196418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodiesel production by direct transesterification of wet spent coffee grounds using switchable solvent as a catalyst and solvent.
    Nguyen HC; Nguyen ML; Wang FM; Juan HY; Su CH
    Bioresour Technol; 2020 Jan; 296():122334. PubMed ID: 31698223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification.
    Cao H; Zhang Z; Wu X; Miao X
    Biomed Res Int; 2013; 2013():930686. PubMed ID: 24195081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A spent coffee grounds based biorefinery for the production of biofuels, biopolymers, antioxidants and biocomposites.
    Karmee SK
    Waste Manag; 2018 Feb; 72():240-254. PubMed ID: 29150258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Concurrent extraction and reaction for the production of biodiesel from wet microalgae.
    Im H; Lee H; Park MS; Yang JW; Lee JW
    Bioresour Technol; 2014; 152():534-7. PubMed ID: 24291292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of KOH/Al2O3 as heterogeneous catalyst for biodiesel production via in situ transesterification from microalgae.
    Ma G; Hu W; Pei H; Jiang L; Ji Y; Mu R
    Environ Technol; 2015; 36(5-8):622-7. PubMed ID: 25220169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valorization of spent coffee grounds recycling as a potential alternative fuel resource in Turkey: An experimental study.
    Atabani AE; Mercimek SM; Arvindnarayan S; Shobana S; Kumar G; Cadir M; Al-Muhatseb AH
    J Air Waste Manag Assoc; 2018 Mar; 68(3):196-214. PubMed ID: 28829684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodiesel and activated carbon from arabica spent coffee grounds.
    Kusuma J; Indartono YS; Mujahidin D
    MethodsX; 2023; 10():102185. PubMed ID: 37152668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds.
    Rocha MV; de Matos LJ; Lima LP; Figueiredo PM; Lucena IL; Fernandes FA; Gonçalves LR
    Bioresour Technol; 2014 Sep; 167():343-8. PubMed ID: 24997378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodiesel production by direct transesterification of microalgal biomass with co-solvent.
    Zhang Y; Li Y; Zhang X; Tan T
    Bioresour Technol; 2015 Nov; 196():712-5. PubMed ID: 26232317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient solvothermal wet in situ transesterification of Nannochloropsis gaditana for biodiesel production.
    Kim B; Chang YK; Lee JW
    Bioprocess Biosyst Eng; 2017 May; 40(5):723-730. PubMed ID: 28210816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vortex fluidic mediated direct transesterification of wet microalgae biomass to biodiesel.
    Sitepu EK; Corbin K; Luo X; Pye SJ; Tang Y; Leterme SC; Heimann K; Raston CL; Zhang W
    Bioresour Technol; 2018 Oct; 266():488-497. PubMed ID: 29990765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wet in situ transesterification of microalgae using ethyl acetate as a co-solvent and reactant.
    Park J; Kim B; Chang YK; Lee JW
    Bioresour Technol; 2017 Apr; 230():8-14. PubMed ID: 28142105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of direct conversion method for microalgal biodiesel production using wet biomass of Nannochloropsis salina.
    Kim TH; Suh WI; Yoo G; Mishra SK; Farooq W; Moon M; Shrivastav A; Park MS; Yang JW
    Bioresour Technol; 2015 Sep; 191():438-44. PubMed ID: 25827362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodiesel from wet microalgae: extraction with hexane after the microwave-assisted transesterification of lipids.
    Cheng J; Huang R; Li T; Zhou J; Cen K
    Bioresour Technol; 2014 Oct; 170():69-75. PubMed ID: 25125194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.