These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 33421930)

  • 41. Dynamics of nonspherical bubble in compressible liquid under the coupling effect of ultrasound and electrostatic field.
    Deng JJ; Yang RF; Lu HQ
    Ultrason Sonochem; 2021 Mar; 71():105371. PubMed ID: 33360367
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental investigation on the effects of the standoff distance and the initial radius on the dynamics of a single bubble near a rigid wall in an ultrasonic field.
    Wu H; Zhou C; Pu Z; Lai X; Yu H; Li D
    Ultrason Sonochem; 2020 Nov; 68():105197. PubMed ID: 32570003
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multi reflection of Lamb wave emission in an acoustic waveguide sensor.
    Schmitt M; Olfert S; Rautenberg J; Lindner G; Henning B; Reindl LM
    Sensors (Basel); 2013 Feb; 13(3):2777-85. PubMed ID: 23447010
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fundamental study of sterilization effects on marine Vibrio sp. in a cylindrical water chamber with supply of only underwater shock waves.
    Wang J; Abe A; Wang Y; Huang C
    Ultrason Sonochem; 2018 Apr; 42():541-550. PubMed ID: 29429701
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Amplification of pressure waves in laser-assisted endodontics with synchronized delivery of Er:YAG laser pulses.
    Lukač N; Jezeršek M
    Lasers Med Sci; 2018 May; 33(4):823-833. PubMed ID: 29327088
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Insights into numerical simulation of controlled ultrasonic waveforms driving single cavitation bubble activity.
    Kerboua K; Hamdaoui O
    Ultrason Sonochem; 2018 May; 43():237-247. PubMed ID: 29555281
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimental investigation on multiple breakdown in water induced by focused nanosecond laser.
    Fu L; Wang S; Xin J; Wang S; Yao C; Zhang Z; Wang J
    Opt Express; 2018 Oct; 26(22):28560-28575. PubMed ID: 30470031
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling and numerical simulation of the bubble cloud dynamics in an ultrasound field for burst wave lithotripsy.
    Maeda K; Colonius T; Maxwell A; Kreider W; Bailey M
    Proc Meet Acoust; 2018 Nov; 35(1):. PubMed ID: 32612742
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inhomogeneous pressure field inside a collapsing bubble accelerated by an acoustic pulse.
    Thomas JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004; 70(1 Pt 2):016305. PubMed ID: 15324167
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Acoustic localization in weakly compressible elastic media containing random air bubbles.
    Liang B; Cheng JC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016605. PubMed ID: 17358273
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Interferometric Fiber Optic Probe for Measurements of Cavitation Bubble Expansion Velocity and Bubble Oscillation Time.
    Zubalic E; Vella D; Babnik A; Jezeršek M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679570
    [TBL] [Abstract][Full Text] [Related]  

  • 52. PIV-Based Acoustic Pressure Measurements of a Single Bubble near the Elastic Boundary.
    Yu Q; Xu Z; Zhao J; Zhang M; Ma X
    Micromachines (Basel); 2020 Jun; 11(7):. PubMed ID: 32610594
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Controllable direction of liquid jets generated by thermocavitation within a droplet.
    Padilla-Martinez JP; Ramirez-San-Juan JC; Berrospe-Rodriguez C; Korneev N; Aguilar G; Zaca-Moran P; Ramos-Garcia R
    Appl Opt; 2017 Sep; 56(25):7167-7173. PubMed ID: 29047977
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Research on Noise-Induced Characteristics of Unsteady Cavitation of a Jet Pump.
    Gan J; Zhang K; Wang D
    ACS Omega; 2022 Apr; 7(14):12255-12267. PubMed ID: 35449934
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultrasonic waveform upshot on mass variation within single cavitation bubble: Investigation of physical and chemical transformations.
    Kerboua K; Hamdaoui O
    Ultrason Sonochem; 2018 Apr; 42():508-516. PubMed ID: 29429697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2014 Jan; 21(1):53-9. PubMed ID: 23769748
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lithotripter shock wave interaction with a bubble near various biomaterials.
    Ohl SW; Klaseboer E; Szeri AJ; Khoo BC
    Phys Med Biol; 2016 Oct; 61(19):7031-7053. PubMed ID: 27649337
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of liquid density variation on the bubble and gas dynamics of a single acoustic cavitation bubble.
    Nazari-Mahroo H; Pasandideh K; Navid HA; Sadighi-Bonabi R
    Ultrasonics; 2020 Mar; 102():106034. PubMed ID: 31670231
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Shock-wave model of acoustic cavitation.
    Peshkovsky SL; Peshkovsky AS
    Ultrason Sonochem; 2008 Apr; 15(4):618-628. PubMed ID: 17869158
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effect of frequency doubled double pulse Nd:YAG laser fiber proximity to the target stone on transient cavitation and acoustic emission.
    Fuh E; Haleblian GE; Norris RD; Albala WD; Simmons N; Zhong P; Preminger GM
    J Urol; 2007 Apr; 177(4):1542-5. PubMed ID: 17382775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.