BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

781 related articles for article (PubMed ID: 33422072)

  • 1. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy.
    Wang B; Zhao Q; Zhang Y; Liu Z; Zheng Z; Liu S; Meng L; Xin Y; Jiang X
    J Exp Clin Cancer Res; 2021 Jan; 40(1):24. PubMed ID: 33422072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting hypoxia and hypoxia-inducible factor-1 in the tumor microenvironment for optimal cancer immunotherapy.
    Kheshtchin N; Hadjati J
    J Cell Physiol; 2022 Feb; 237(2):1285-1298. PubMed ID: 34796969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer.
    Chouaib S; Noman MZ; Kosmatopoulos K; Curran MA
    Oncogene; 2017 Jan; 36(4):439-445. PubMed ID: 27345407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving Cancer Immunotherapy by Targeting the Hypoxic Tumor Microenvironment: New Opportunities and Challenges.
    Noman MZ; Hasmim M; Lequeux A; Xiao M; Duhem C; Chouaib S; Berchem G; Janji B
    Cells; 2019 Sep; 8(9):. PubMed ID: 31540045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia as a potential inducer of immune tolerance, tumor plasticity and a driver of tumor mutational burden: Impact on cancer immunotherapy.
    Abou Khouzam R; Janji B; Thiery J; Zaarour RF; Chamseddine AN; Mayr H; Savagner P; Kieda C; Gad S; Buart S; Lehn JM; Limani P; Chouaib S
    Semin Cancer Biol; 2023 Dec; 97():104-123. PubMed ID: 38029865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand?
    Yuan CS; Deng ZW; Qin D; Mu YZ; Chen XG; Liu Y
    Acta Biomater; 2021 Apr; 125():1-28. PubMed ID: 33639310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating tumor hypoxic stress in novel and more adaptable strategies for cancer immunotherapy.
    Abou Khouzam R; Goutham HV; Zaarour RF; Chamseddine AN; Francis A; Buart S; Terry S; Chouaib S
    Semin Cancer Biol; 2020 Oct; 65():140-154. PubMed ID: 31927131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor Hypoxia: A Key Determinant of Microenvironment Hostility and a Major Checkpoint during the Antitumor Response.
    Francis A; Venkatesh GH; Zaarour RF; Zeinelabdin NA; Nawafleh HH; Prasad P; Buart S; Terry S; Chouaib S
    Crit Rev Immunol; 2018; 38(6):505-524. PubMed ID: 31002604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rationale for Combining Radiotherapy and Immune Checkpoint Inhibition for Patients With Hypoxic Tumors.
    Eckert F; Zwirner K; Boeke S; Thorwarth D; Zips D; Huber SM
    Front Immunol; 2019; 10():407. PubMed ID: 30930892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Roles of CD38 and CD157 in the Solid Tumor Microenvironment and Cancer Immunotherapy.
    Wo YJ; Gan ASP; Lim X; Tay ISY; Lim S; Lim JCT; Yeong JPS
    Cells; 2019 Dec; 9(1):. PubMed ID: 31861847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directing Hypoxic Tumor Microenvironment and HIF to Illuminate Cancer Immunotherapy's Existing Prospects and Challenges in Drug Targets.
    Ray SK; Mukherjee S
    Curr Drug Targets; 2022; 23(5):471-485. PubMed ID: 35021970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia: a key player in antitumor immune response. A Review in the Theme: Cellular Responses to Hypoxia.
    Noman MZ; Hasmim M; Messai Y; Terry S; Kieda C; Janji B; Chouaib S
    Am J Physiol Cell Physiol; 2015 Nov; 309(9):C569-79. PubMed ID: 26310815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tumor hypoxia: From basic knowledge to therapeutic implications.
    Liao C; Liu X; Zhang C; Zhang Q
    Semin Cancer Biol; 2023 Jan; 88():172-186. PubMed ID: 36603793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy.
    Gao S; Yang D; Fang Y; Lin X; Jin X; Wang Q; Wang X; Ke L; Shi K
    Theranostics; 2019; 9(1):126-151. PubMed ID: 30662558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting Metabolism to Improve the Tumor Microenvironment for Cancer Immunotherapy.
    Bader JE; Voss K; Rathmell JC
    Mol Cell; 2020 Jun; 78(6):1019-1033. PubMed ID: 32559423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Antitumor Cytotoxic Response: If the Killer Cells Play the Music, the Microenvironmental Hypoxia Plays the Tune.
    Chouaib S
    Crit Rev Immunol; 2020; 40(2):157-166. PubMed ID: 32749093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Promise of Targeting Hypoxia to Improve Cancer Immunotherapy: Mirage or Reality?
    Janji B; Chouaib S
    Front Immunol; 2022; 13():880810. PubMed ID: 35795658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immuno-Metabolism and Microenvironment in Cancer: Key Players for Immunotherapy.
    Giannone G; Ghisoni E; Genta S; Scotto G; Tuninetti V; Turinetto M; Valabrega G
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32575899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common phenotypic dynamics of tumor-infiltrating lymphocytes across different histologies upon checkpoint inhibition: impact on clinical outcome.
    Araujo B de Lima V; Borch A; Hansen M; Draghi A; Spanggaard I; Rohrberg K; Reker Hadrup S; Lassen U; Svane IM
    Cytotherapy; 2020 Apr; 22(4):204-213. PubMed ID: 32201034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies.
    Petitprez F; Meylan M; de Reyniès A; Sautès-Fridman C; Fridman WH
    Front Immunol; 2020; 11():784. PubMed ID: 32457745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 40.