These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 3342233)
1. Temperature dependence of glucose transport in erythrocytes from normal and alloxan-diabetic rats. Abumrad NA; Briscoe P; Beth AH; Whitesell RR Biochim Biophys Acta; 1988 Feb; 938(2):222-30. PubMed ID: 3342233 [TBL] [Abstract][Full Text] [Related]
2. Human erythrocyte sugar transport is incompatible with available carrier models. Cloherty EK; Heard KS; Carruthers A Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697 [TBL] [Abstract][Full Text] [Related]
3. Activation energy of the slowest step in the glucose carrier cycle: break at 23 degrees C and correlation with membrane lipid fluidity. Whitesell RR; Regen DM; Beth AH; Pelletier DK; Abumrad NA Biochemistry; 1989 Jun; 28(13):5618-25. PubMed ID: 2775725 [TBL] [Abstract][Full Text] [Related]
4. Equilibration of hexose concentration in erythrocytes from normal and diabetic rats. Manuel Y Keenoy B; Malaisse WJ Biochem Med Metab Biol; 1993 Aug; 50(1):54-66. PubMed ID: 8373635 [TBL] [Abstract][Full Text] [Related]
5. Net sugar transport is a multistep process. Evidence for cytosolic sugar binding sites in erythrocytes. Cloherty EK; Sultzman LA; Zottola RJ; Carruthers A Biochemistry; 1995 Nov; 34(47):15395-406. PubMed ID: 7492539 [TBL] [Abstract][Full Text] [Related]
6. Metabolic fuel and amino acid transport into the brain in experimental diabetes mellitus. McCall AL; Millington WR; Wurtman RJ Proc Natl Acad Sci U S A; 1982 Sep; 79(17):5406-10. PubMed ID: 6752947 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of 3-O-methylglucose transport in human erythrocytes by forskolin. Sergeant S; Kim HD J Biol Chem; 1985 Nov; 260(27):14677-82. PubMed ID: 2997220 [TBL] [Abstract][Full Text] [Related]
8. Kinetic tests of models for sugar transport in human erythrocytes and a comparison of fresh and cold-stored cells. Weiser MB; Razin M; Stein WD Biochim Biophys Acta; 1983 Jan; 727(2):379-88. PubMed ID: 6838879 [TBL] [Abstract][Full Text] [Related]
9. Decreased incorporation of long-chain fatty acids into erythrocyte phospholipids of STZ-D rats. Dang AQ; Faas FH; Jethmalani SM; Carter WJ Diabetes; 1991 Dec; 40(12):1645-51. PubMed ID: 1756905 [TBL] [Abstract][Full Text] [Related]
10. 3-O-methyl-D-glucose uptake by erythrocytes of normal and diabetic subjects. Gomis R; Tomas C; Novials A; Malaisse WJ Acta Diabetol Lat; 1990; 27(4):279-83. PubMed ID: 2087928 [TBL] [Abstract][Full Text] [Related]
12. Non-insulin dependent diabetic patients have increased glucose uptake in red blood cells. Bistritzer T; Roeder LM; Hanukoglu L; Levin PA Horm Metab Res; 1991 Feb; 23(2):70-3. PubMed ID: 2045061 [TBL] [Abstract][Full Text] [Related]
13. Hepatic microsomal glucose-6-phosphatase of normal and alloxan-diabetic rats. Thermotropic effects on kinetics and interaction with deoxycholate and 1-anilino-8-naphthalene sulfonate. Maddaiah VT; Stemmer CL; Clejan S; Collipp PJ Biochim Biophys Acta; 1981 Jan; 657(1):106-21. PubMed ID: 6260194 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of hexose transport by adenosine derivatives in human erythrocytes. May JM J Cell Physiol; 1988 May; 135(2):332-8. PubMed ID: 3372599 [TBL] [Abstract][Full Text] [Related]
15. Plasma free fatty acids decrease insulin-stimulated skeletal muscle glucose uptake by suppressing glycolysis in conscious rats. Kim JK; Wi JK; Youn JH Diabetes; 1996 Apr; 45(4):446-53. PubMed ID: 8603766 [TBL] [Abstract][Full Text] [Related]
16. In vitro insulin action on erythrocyte glucose metabolism in normal and diabetic rats. Agarwal VR; Rastogi AK; Sagar P Diabetologia; 1988 Jan; 31(1):51-3. PubMed ID: 3127260 [TBL] [Abstract][Full Text] [Related]
17. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes. Albert SG Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046 [TBL] [Abstract][Full Text] [Related]
18. Analysis of protein-mediated 3-O-methylglucose transport in rat erythrocytes: rejection of the alternating conformation carrier model for sugar transport. Helgerson AL; Carruthers A Biochemistry; 1989 May; 28(11):4580-94. PubMed ID: 2765504 [TBL] [Abstract][Full Text] [Related]
19. Transport of glucose and fructose in rat hepatocytes at 37 degrees C. Okuno Y; Gliemann J Biochim Biophys Acta; 1986 Nov; 862(2):329-34. PubMed ID: 3778895 [TBL] [Abstract][Full Text] [Related]
20. Insulin binding and glucose transport activity in cardiomyocytes of a diabetic rat. Almira EC; Garcia AR; Boshell BR Am J Physiol; 1986 Apr; 250(4 Pt 1):E402-6. PubMed ID: 3515965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]