These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 33422723)

  • 1. Influence of pelvic shape on strain patterns: A computational analysis using finite element mesh morphing techniques.
    Salo Z; Kreder H; Whyne CM
    J Biomech; 2021 Feb; 116():110207. PubMed ID: 33422723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of pelvic strain in different gait configurations in a validated cohort of computed tomography based finite element models.
    Salo Z; Beek M; Wright D; Maloul A; Whyne CM
    J Biomech; 2017 Nov; 64():120-130. PubMed ID: 29031524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.
    Salo Z; Beek M; Wright D; Whyne CM
    J Biomech; 2015 Apr; 48(6):1125-32. PubMed ID: 25680299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of mesh morphing and mapping techniques in patient specific modelling of the human pelvis.
    Salo Z; Beek M; Whyne CM
    Int J Numer Method Biomed Eng; 2012 Aug; 28(8):904-13. PubMed ID: 25099570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mesh-morphing algorithms for specimen-specific finite element modeling.
    Sigal IA; Hardisty MR; Whyne CM
    J Biomech; 2008; 41(7):1381-9. PubMed ID: 18397789
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of mesh morphing and mapping techniques in patient specific modeling of the human pelvis.
    Salo Z; Beek M; Whyne CM
    Int J Numer Method Biomed Eng; 2013 Jan; 29(1):104-13. PubMed ID: 23293071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Impact of an Open-Book Pelvic Ring Injury on Bone Strain: Validation of a Finite Element Model and Analysis Within the Gait Cycle.
    Salo Z; Kreder H; Whyne CM
    J Biomech Eng; 2021 Jul; 143(7):. PubMed ID: 33704380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm.
    O'Reilly MA; Whyne CM
    Spine (Phila Pa 1976); 2008 Aug; 33(17):1876-81. PubMed ID: 18670341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element analysis of the pelvis after modular hemipelvic endoprosthesis reconstruction.
    Zhou Y; Min L; Liu Y; Shi R; Zhang W; Zhang H; Duan H; Tu C
    Int Orthop; 2013 Apr; 37(4):653-8. PubMed ID: 23318936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Design of Minimal Invasive Screw on Posterior Pelvis Ring and Pelvic Finite Element Analysis].
    Tang F; Min L; Wang YL; Qu B; Zhou Y; Luo Y; Zhang WL; Shi R; Duan H; Tu CQ
    Sichuan Da Xue Xue Bao Yi Xue Ban; 2017 Sep; 48(5):673-680. PubMed ID: 29130656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.
    Grassi L; Hraiech N; Schileo E; Ansaloni M; Rochette M; Viceconti M
    Med Eng Phys; 2011 Jan; 33(1):112-20. PubMed ID: 21036655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a biofidelic computational model of human pelvis for predicting biomechanical responses and pelvic fractures.
    Zeng W; Mukherjee S; Neice R; Salzar RS; Panzer MB
    Comput Biol Med; 2024 Mar; 170():107986. PubMed ID: 38262201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of Different Boundary Conditions in Finite Element Analysis on Pelvic Biomechanical Load Transmission.
    Hu P; Wu T; Wang HZ; Qi XZ; Yao J; Cheng XD; Chen W; Zhang YZ
    Orthop Surg; 2017 Feb; 9(1):115-122. PubMed ID: 28300359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element study of human pelvis model in side impact for Chinese adult occupants.
    Ma Z; Lan F; Chen J; Liu W
    Traffic Inj Prev; 2015; 16(4):409-17. PubMed ID: 25133596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model.
    Hao Z; Wan C; Gao X; Ji T
    J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element modeling of the human kidney for probabilistic occupant models: Statistical shape analysis and mesh morphing.
    Yates KM; Untaroiu CD
    J Biomech; 2018 Jun; 74():50-56. PubMed ID: 29699822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A survey of pelvic types on computed tomography images.
    Vučinić N; Paulsen F; Milinkov M; Nikolić MB; Todorović ST; Knezi N; Nikolić U
    Ann Anat; 2022 Aug; 243():151942. PubMed ID: 35378253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mobility and stress analysis of different surgical simulations during a sacral colpopexy, using a finite element model of the pelvic system.
    Jeanditgautier E; Mayeur O; Brieu M; Lamblin G; Rubod C; Cosson M
    Int Urogynecol J; 2016 Jun; 27(6):951-7. PubMed ID: 26755057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subject-specific finite element model of the pelvis: development, validation and sensitivity studies.
    Anderson AE; Peters CL; Tuttle BD; Weiss JA
    J Biomech Eng; 2005 Jun; 127(3):364-73. PubMed ID: 16060343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.