These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33422755)

  • 61. Formation and soot combustion of honeycomb-like LaFeO3 microfibers.
    Zou L; Jing M; Xiang J; Wang P; Shen X
    J Nanosci Nanotechnol; 2014 Mar; 14(3):2446-50. PubMed ID: 24745245
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Catalytic performance of Ce/Zr series catalysts on soot combustion].
    Zhu L; Wang XZ; Hao ZP
    Huan Jing Ke Xue; 2005 Sep; 26(5):7-11. PubMed ID: 16366461
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Low-temperature co-purification of NO
    Lu P; Yue H; Xing Y; Wei J; Zeng Z; Li R; Wu W
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20575-20590. PubMed ID: 29748813
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nitrate storage behavior of Ba/MnOx-CeO2 catalyst and its activity for soot oxidation with heat transfer limitations.
    Wu X; Liu S; Lin F; Weng D
    J Hazard Mater; 2010 Sep; 181(1-3):722-8. PubMed ID: 20538410
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of Fatty Acid Profiles and Molecular Structures of Nine New Source of Biodiesel on Combustion and Emission.
    Jafarihaghighi F; Ardjmand M; Salar Hassani M; Mirzajanzadeh M; Bahrami H
    ACS Omega; 2020 Jul; 5(26):16053-16063. PubMed ID: 32656427
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Oxidation of diesel soot on binary oxide CuCr(Co)-based monoliths.
    Soloviev SO; Kapran AY; Kurylets YP
    J Environ Sci (China); 2015 Feb; 28():171-7. PubMed ID: 25662252
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Adsorption/desorption studies of NOx on well-mixed oxides derived from Co-Mg/Al Hydrotalcite-like compounds.
    Yu JJ; Jiang Z; Zhu L; Hao ZP; Xu ZP
    J Phys Chem B; 2006 Mar; 110(9):4291-300. PubMed ID: 16509726
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Catalytic evaluation of promoted CeO2-ZrO2 by transition, alkali, and alkaline-earth metal oxides for diesel soot oxidation.
    Alinezhadchamazketi A; Khodadadi AA; Mortazavi Y; Nemati A
    J Environ Sci (China); 2013 Dec; 25(12):2498-506. PubMed ID: 24649683
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Exceptionally high and reversible NO
    Zhu H; Wang R
    Nanoscale; 2023 Jan; 15(4):1709-1717. PubMed ID: 36594592
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Combining nonthermal plasma with perovskite-like catalyst for NOx storage and reduction.
    Peng HH; Pan KL; Yu SJ; Yan SY; Chang MB
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19590-601. PubMed ID: 27392625
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Modeling preparation condition and composition-activity relationship of perovskite-type LaxSr1-xFeyCo1-yO3 nano catalyst.
    Oskoui SA; Niaei A; Tseng HH; Salari D; Izadkhah B; Hosseini SA
    ACS Comb Sci; 2013 Dec; 15(12):609-21. PubMed ID: 24102474
    [TBL] [Abstract][Full Text] [Related]  

  • 72. NO
    Wang P; Yu D; Wu G; Sheikh F; Liu J
    Environ Sci Pollut Res Int; 2019 Sep; 26(27):27888-27896. PubMed ID: 31346940
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Simultaneous catalytic removal of NOx and diesel PM over La(0.9) K(0.1) CoO3 catalyst assisted by plasma.
    Pei MX; Lin H; Shangguan WF; Huang Z
    J Environ Sci (China); 2005; 17(2):220-3. PubMed ID: 16295893
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Plausibility of potassium ion-exchanged ZSM-5 as soot combustion catalysts.
    Lu C; Liu T; Shi Q; Li Q; Xin Y; Zheng L; Zhang Z
    Sci Rep; 2017 Jun; 7(1):3300. PubMed ID: 28607466
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Operando potassium K-edge X-ray absorption spectroscopy: investigating potassium catalysts during soot oxidation.
    Davies CJ; Mayer A; Gabb J; Walls JM; Degirmenci V; Thompson PBJ; Cibin G; Golunski S; Kondrat SA
    Phys Chem Chem Phys; 2020 Sep; 22(34):18976-18988. PubMed ID: 32648863
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Promoting Electrocatalytic Activity and Stability via Er
    Liu Y; Tian Y; Wang W; Li Y; Chattopadhyay S; Chi B; Pu J
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):57941-57949. PubMed ID: 33332091
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A novel four-way combining catalysts for simultaneous removal of exhaust pollutants from diesel engine.
    Liu J; Xu J; Zhao Z; Duan A; Jiang G; Jing Y
    J Environ Sci (China); 2010; 22(7):1104-9. PubMed ID: 21175003
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The effect of soot on ammonium nitrate species and NO2 selective catalytic reduction over Cu-zeolite catalyst-coated particulate filter.
    Mihai O; Tamm S; Stenfeldt M; Olsson L
    Philos Trans A Math Phys Eng Sci; 2016 Feb; 374(2061):. PubMed ID: 26755757
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NOx removal using low-temperature SCR with Mn-V2O5/TiO2 catalyst.
    Choi SW; Choi SK; Bae HK
    J Air Waste Manag Assoc; 2015 Apr; 65(4):485-91. PubMed ID: 25947218
    [TBL] [Abstract][Full Text] [Related]  

  • 80. [Catalytic combustion of soot on combined oxide catalysts].
    He XW; Yu JJ; Kang SF; Hao ZP; Hu C
    Huan Jing Ke Xue; 2005 Jan; 26(1):28-31. PubMed ID: 15859403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.