These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33422755)

  • 81. Synthesis of α-MnO
    Yang Q; Li Q; Li L; Peng Y; Wang D; Ma Y; Li J
    J Hazard Mater; 2021 Feb; 403():123811. PubMed ID: 33264910
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Catalytic Oxidation of Soot on a Novel Active Ca-Co Dually-Doped Lanthanum Tin Pyrochlore Oxide.
    Ai L; Wang Z; Cui C; Liu W; Wang L
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29695051
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Iron-doped Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO with NH3.
    Shen B; Liu T; Zhao N; Yang X; Deng L
    J Environ Sci (China); 2010; 22(9):1447-54. PubMed ID: 21174978
    [TBL] [Abstract][Full Text] [Related]  

  • 84. A comparative study on the Mn/TiO
    Zhang Y; Huang T; Xiao R; Xu H; Shen K; Zhou C
    Environ Technol; 2018 May; 39(10):1284-1294. PubMed ID: 28504006
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Using CuO-MnO
    Zhao B; Yi H; Tang X; Li Q; Liu D; Gao F
    J Hazard Mater; 2019 Feb; 364():700-709. PubMed ID: 30412843
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Gaseous Heterogeneous Catalytic Reactions over Mn-Based Oxides for Environmental Applications: A Critical Review.
    Xu H; Yan N; Qu Z; Liu W; Mei J; Huang W; Zhao S
    Environ Sci Technol; 2017 Aug; 51(16):8879-8892. PubMed ID: 28662330
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Boosting the Alkali/Heavy Metal Poisoning Resistance for NO Removal by Using Iron-Titanium Pillared Montmorillonite Catalysts.
    Xu D; Wu W; Wang P; Deng J; Yan T; Zhang D
    J Hazard Mater; 2020 Nov; 399():122947. PubMed ID: 32521318
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Alkali-Resistant NO
    Zhou G; Maitarad P; Wang P; Han L; Yan T; Li H; Zhang J; Shi L; Zhang D
    Environ Sci Technol; 2020 Oct; 54(20):13314-13321. PubMed ID: 32960572
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Storage and reduction of NO
    Wei TS; Pan KL; Yu SJ; Yan SY; Chang MB
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35582-35593. PubMed ID: 30353430
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Heterostructured Copper-Ceria and Iron-Ceria Nanorods: Role of Morphology, Redox, and Acid Properties in Catalytic Diesel Soot Combustion.
    Sudarsanam P; Hillary B; Amin MH; Rockstroh N; Bentrup U; Brückner A; Bhargava SK
    Langmuir; 2018 Feb; 34(8):2663-2673. PubMed ID: 29397744
    [TBL] [Abstract][Full Text] [Related]  

  • 91. PAH and soot emissions from burning components of medical waste: examination/surgical gloves and cotton pads.
    Levendis YA; Atal A; Carlson JB; Quintana MD
    Chemosphere; 2001; 42(5-7):775-83. PubMed ID: 11219703
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Facile Fabrication of the Cu-N-C Catalyst with Atomically Dispersed Unsaturated Cu-N2 Active Sites for Highly Efficient and Selective Glaser-Hay Coupling.
    Ren P; Li Q; Song T; Yang Y
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27210-27218. PubMed ID: 32438795
    [TBL] [Abstract][Full Text] [Related]  

  • 93. CeO
    Kim MJ; Han GH; Lee SH; Jung HW; Choung JW; Kim CH; Lee KY
    J Hazard Mater; 2020 Feb; 384():121341. PubMed ID: 31590086
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Effect of the Electronic State of Cu, Ag, and Au on Diesel Soot Abatement: Performance of Cu/ZnO, Ag/ZnO, and Au/ZnO Catalysts.
    Corro G; Flores JA; Pacheco-Aguirre F; Pal U; Bañuelos F; Torralba R; Olivares-Xometl O
    ACS Omega; 2019 Mar; 4(3):5795-5804. PubMed ID: 31459731
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Roles of cobalt and cerium species in three-dimensionally ordered macroporous Co
    Jin B; Wu X; Weng D; Liu S; Yu T; Zhao Z; Wei Y
    J Colloid Interface Sci; 2018 Dec; 532():579-587. PubMed ID: 30114647
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Synthesis and characterization of catalysts produced from paper mill sludge. I. Determination Of NOx removal capability.
    Khalili NR; Jain H; Arastoopour H
    J Hazard Mater; 2000 Dec; 80(1-3):207-21. PubMed ID: 11080579
    [TBL] [Abstract][Full Text] [Related]  

  • 97. In situ Raman analyses of the soot oxidation reaction over nanostructured ceria-based catalysts.
    Sartoretti E; Novara C; Giorgis F; Piumetti M; Bensaid S; Russo N; Fino D
    Sci Rep; 2019 Mar; 9(1):3875. PubMed ID: 30846727
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Soot Combustion over Nanostructured Ceria with Different Morphologies.
    Zhang W; Niu X; Chen L; Yuan F; Zhu Y
    Sci Rep; 2016 Jun; 6():29062. PubMed ID: 27353143
    [TBL] [Abstract][Full Text] [Related]  

  • 99. [Effect of precious metal loaded on LaMnO3 on catalytic oxidation of soot].
    Ming CB; Ye DQ; Liu YL; Yang L
    Huan Jing Ke Xue; 2008 Mar; 29(3):576-82. PubMed ID: 18649510
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Combined fast selective reduction using Mn-based catalysts and nonthermal plasma for NOx removal.
    Chen JX; Pan KL; Yu SJ; Yen SY; Chang MB
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21496-21508. PubMed ID: 28748438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.