These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 33422792)

  • 41. Hydrodechlorination of DDT and chloroalkanes over carbon-supported Ni-Mo catalyst.
    Piechocki W; Gryglewicz G; Gryglewicz S
    J Hazard Mater; 2009 Apr; 163(2-3):1397-402. PubMed ID: 18715708
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Catalytic hydrothermal liquefaction of lignin for production of aromatic hydrocarbon over metal supported mesoporous catalyst.
    Feng L; Li X; Wang Z; Liu B
    Bioresour Technol; 2021 Mar; 323():124569. PubMed ID: 33360949
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synergy in Lignin Upgrading by a Combination of Cu-Based Mixed Oxide and Ni-Phosphide Catalysts in Supercritical Ethanol.
    Korányi TI; Huang X; Coumans AE; Hensen EJ
    ACS Sustain Chem Eng; 2017 Apr; 5(4):3535-3543. PubMed ID: 28405528
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of catalyst and reaction conditions on aromatic monomer yields, product distribution, and sugar yields during lignin hydrogenolysis of silver birch wood.
    Phongpreecha T; Christy KF; Singh SK; Hao P; Hodge DB
    Bioresour Technol; 2020 Nov; 316():123907. PubMed ID: 32739581
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unraveling the reaction mechanism of selective C9 monomeric phenols formation from lignin using Pd-Al
    Gurrala L; Kumar MM; Yerrayya A; Kandasamy P; Castaño P; Raja T; Pilloni G; Paek C; Vinu R
    Bioresour Technol; 2022 Jan; 344(Pt B):126204. PubMed ID: 34710595
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone.
    Kong X; Liu J
    PLoS One; 2014; 9(7):e101744. PubMed ID: 25009974
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Noble metal catalyzed aqueous phase hydrogenation and hydrodeoxygenation of lignin-derived pyrolysis oil and related model compounds.
    Mu W; Ben H; Du X; Zhang X; Hu F; Liu W; Ragauskas AJ; Deng Y
    Bioresour Technol; 2014 Dec; 173():6-10. PubMed ID: 25280108
    [TBL] [Abstract][Full Text] [Related]  

  • 48. One-Pot Conversion of Lignin into Naphthenes Catalyzed by a Heterogeneous Rhenium Oxide-Modified Iridium Compound.
    Li X; Zhang B; Pan X; Ji J; Ren Y; Wang H; Ji N; Liu Q; Li C
    ChemSusChem; 2020 Sep; 13(17):4409-4419. PubMed ID: 31944598
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gas-Phase Partial Oxidation of Lignin to Carboxylic Acids over Vanadium Pyrophosphate and Aluminum-Vanadium-Molybdenum.
    Lotfi S; Boffito DC; Patience GS
    ChemSusChem; 2015 Oct; 8(20):3424-32. PubMed ID: 26361086
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Graphene-based versus alumina supports on CO
    Méndez-Mateos D; Barrio VL; Requies JM; Gil-Calvo M
    Environ Sci Pollut Res Int; 2024 May; 31(25):36093-36117. PubMed ID: 36929261
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An efficient way to synthesize biomass-based molybdenum carbide catalyst via pyrolysis carbonization and its application for lignin catalytic pyrolysis.
    Yu J; Luo B; Wang Y; Wang S; Wu K; Liu C; Chu S; Zhang H
    Bioresour Technol; 2022 Feb; 346():126640. PubMed ID: 34971778
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catalytic Lignin Depolymerization to Aromatic Chemicals.
    Zhang C; Wang F
    Acc Chem Res; 2020 Feb; 53(2):470-484. PubMed ID: 31999099
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pd-Based Nano-Catalysts Promote Biomass Lignin Conversion into Value-Added Chemicals.
    Zhao M; Zhao L; Zhao XY; Cao JP; Maruyama KI
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512471
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Selective Fragmentation of Biorefinery Corncob Lignin into p-Hydroxycinnamic Esters with a Supported Zinc Molybdate Catalyst.
    Wang S; Gao W; Li H; Xiao LP; Sun RC; Song G
    ChemSusChem; 2018 Jul; 11(13):2114-2123. PubMed ID: 29660264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lewis acid-catalyzed biphasic 2-methyltetrahydrofuran/H
    Xue B; Yang Y; Zhu M; Sun Y; Li X
    Bioresour Technol; 2018 Dec; 270():55-61. PubMed ID: 30212774
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Design of Nickel Supported on Water-Tolerant Nb
    Leal GF; Lima S; Graça I; Carrer H; Barrett DH; Teixeira-Neto E; Curvelo AAS; Rodella CB; Rinaldi R
    iScience; 2019 May; 15():467-488. PubMed ID: 31125909
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Liquefaction of kraft lignin by hydrocracking with simultaneous use of a novel dual acid-base catalyst and a hydrogenation catalyst.
    Wang J; Li W; Wang H; Ma Q; Li S; Chang HM; Jameel H
    Bioresour Technol; 2017 Nov; 243():100-106. PubMed ID: 28651130
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Steam reforming of glycerol for hydrogen production over supported nickel catalysts on alumina.
    Choi GY; Kim YC; Moon DJ; Seo G; Park NC
    J Nanosci Nanotechnol; 2013 Jan; 13(1):653-6. PubMed ID: 23646792
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient and product-controlled depolymerization of lignin oriented by metal chloride cooperated with Pd/C.
    Shu R; Long J; Yuan Z; Zhang Q; Wang T; Wang C; Ma L
    Bioresour Technol; 2015 Mar; 179():84-90. PubMed ID: 25536506
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Direct production of naphthenes and paraffins from lignin.
    Kong J; He M; Lercher JA; Zhao C
    Chem Commun (Camb); 2015 Dec; 51(99):17580-3. PubMed ID: 26478925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.