These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 33422933)

  • 41. Single-molecule imaging of epigenetic complexes in living cells: insights from studies on Polycomb group proteins.
    Brown K; Andrianakos H; Ingersoll S; Ren X
    Nucleic Acids Res; 2021 Jul; 49(12):6621-6637. PubMed ID: 34009336
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Structural biology of transcription on eukaryotic chromatin].
    Nishimura Y
    Tanpakushitsu Kakusan Koso; 2005 Aug; 50(10 Suppl):1247-63. PubMed ID: 16104592
    [No Abstract]   [Full Text] [Related]  

  • 43. Single and combinatorial chromatin coupling events underlies the function of transcript factor Krüppel-like factor 11 in the regulation of gene networks.
    Calvo E; Grzenda A; Lomberk G; Mathison A; Iovanna J; Urrutia R
    BMC Mol Biol; 2014 May; 15():10. PubMed ID: 24885560
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Progressive polycomb assembly on H3K27me3 compartments generates polycomb bodies with developmentally regulated motion.
    Cheutin T; Cavalli G
    PLoS Genet; 2012 Jan; 8(1):e1002465. PubMed ID: 22275876
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Changes in attitude, changes in latitude: nuclear receptors remodeling chromatin to regulate transcription.
    Chen J; Kinyamu HK; Archer TK
    Mol Endocrinol; 2006 Jan; 20(1):1-13. PubMed ID: 16002433
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A dynamic interplay of enhancer elements regulates
    Xie L; Torigoe SE; Xiao J; Mai DH; Li L; Davis FP; Dong P; Marie-Nelly H; Grimm J; Lavis L; Darzacq X; Cattoglio C; Liu Z; Tjian R
    Genes Dev; 2017 Sep; 31(17):1795-1808. PubMed ID: 28982762
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Runx2/Cbfa1 functions: diverse regulation of gene transcription by chromatin remodeling and co-regulatory protein interactions.
    Lian JB; Stein JL; Stein GS; van Wijnen AJ; Montecino M; Javed A; Gutierrez S; Shen J; Zaidi SK; Drissi H
    Connect Tissue Res; 2003; 44 Suppl 1():141-8. PubMed ID: 12952188
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Visualizing Transcription Factor Binding on Mitotic Chromosomes Using Single-Molecule Live-Cell Imaging.
    Kwan JZJ; Nguyen TF; Teves SS
    Methods Mol Biol; 2019; 2038():239-250. PubMed ID: 31407289
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Interplay Between Chromatin Architecture and Lineage-Specific Transcription Factors and the Regulation of
    Miyazaki K; Miyazaki M
    Front Immunol; 2021; 12():659761. PubMed ID: 33796120
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CHD chromatin remodelers and the transcription cycle.
    Murawska M; Brehm A
    Transcription; 2011; 2(6):244-53. PubMed ID: 22223048
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pioneer factors: directing transcriptional regulators within the chromatin environment.
    Magnani L; Eeckhoute J; Lupien M
    Trends Genet; 2011 Nov; 27(11):465-74. PubMed ID: 21885149
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The chromatin-remodeling complexes B-WICH and NuRD regulate ribosomal transcription in response to glucose.
    Rolicka A; Guo Y; Gañez Zapater A; Tariq K; Quin J; Vintermist A; Sadeghifar F; Arsenian-Henriksson M; Östlund Farrants AK
    FASEB J; 2020 Aug; 34(8):10818-10834. PubMed ID: 32598531
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantifying the Binding and Target-Search Kinetics of Transcriptional Regulatory Factors by Live-Cell Single-Molecule Tracking.
    Ingersoll S; Brown K; Ma B; Ren X
    Methods Mol Biol; 2023; 2599():141-162. PubMed ID: 36427148
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Control of gene expression and assembly of chromosomal subdomains by chromatin regulators with antagonistic functions.
    Lam AL; Pazin DE; Sullivan BA
    Chromosoma; 2005 Sep; 114(4):242-51. PubMed ID: 16012860
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Antagonising Chromatin Remodelling Activities in the Regulation of Mammalian Ribosomal Transcription.
    Tariq K; Östlund Farrants AK
    Genes (Basel); 2021 Jun; 12(7):. PubMed ID: 34202617
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diverse roles and interactions of the SWI/SNF chromatin remodeling complex revealed using global approaches.
    Euskirchen GM; Auerbach RK; Davidov E; Gianoulis TA; Zhong G; Rozowsky J; Bhardwaj N; Gerstein MB; Snyder M
    PLoS Genet; 2011 Mar; 7(3):e1002008. PubMed ID: 21408204
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chromatin: Going a TAD out on a limb.
    Koch L
    Nat Rev Genet; 2016 Dec; 17(12):717. PubMed ID: 27748376
    [No Abstract]   [Full Text] [Related]  

  • 58. SWI/SNF chromatin remodeling controls Notch-responsive enhancer accessibility.
    Pillidge Z; Bray SJ
    EMBO Rep; 2019 May; 20(5):. PubMed ID: 30914409
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Assessing the model transferability for prediction of transcription factor binding sites based on chromatin accessibility.
    Liu S; Zibetti C; Wan J; Wang G; Blackshaw S; Qian J
    BMC Bioinformatics; 2017 Jul; 18(1):355. PubMed ID: 28750606
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Epigenetic regulation by polycomb group complexes: focus on roles of CBX proteins.
    Ma RG; Zhang Y; Sun TT; Cheng B
    J Zhejiang Univ Sci B; 2014 May; 15(5):412-28. PubMed ID: 24793759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.