BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 33422934)

  • 21. On the choreography of genome folding: A grand pas de deux of cohesin and CTCF.
    van Ruiten MS; Rowland BD
    Curr Opin Cell Biol; 2021 Jun; 70():84-90. PubMed ID: 33545664
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Cohesin Release Factor WAPL Restricts Chromatin Loop Extension.
    Haarhuis JHI; van der Weide RH; Blomen VA; Yáñez-Cuna JO; Amendola M; van Ruiten MS; Krijger PHL; Teunissen H; Medema RH; van Steensel B; Brummelkamp TR; de Wit E; Rowland BD
    Cell; 2017 May; 169(4):693-707.e14. PubMed ID: 28475897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hit the brakes - a new perspective on the loop extrusion mechanism of cohesin and other SMC complexes.
    Matityahu A; Onn I
    J Cell Sci; 2021 Jan; 134(1):. PubMed ID: 33419949
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CTCF-Binding Elements Mediate Accessibility of RAG Substrates During Chromatin Scanning.
    Jain S; Ba Z; Zhang Y; Dai HQ; Alt FW
    Cell; 2018 Jun; 174(1):102-116.e14. PubMed ID: 29804837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. DNA loop extrusion by human cohesin.
    Davidson IF; Bauer B; Goetz D; Tang W; Wutz G; Peters JM
    Science; 2019 Dec; 366(6471):1338-1345. PubMed ID: 31753851
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absolute quantification of cohesin, CTCF and their regulators in human cells.
    Holzmann J; Politi AZ; Nagasaka K; Hantsche-Grininger M; Walther N; Koch B; Fuchs J; Dürnberger G; Tang W; Ladurner R; Stocsits RR; Busslinger GA; Novák B; Mechtler K; Davidson IF; Ellenberg J; Peters JM
    Elife; 2019 Jun; 8():. PubMed ID: 31204999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of cohesin-mediated chromosome folding by PDS5 in mammals.
    Yu D; Chen G; Wang Y; Wang Y; Lin R; Liu N; Zhu P; Liu H; Hu T; Feng R; Feng H; Lan F; Cai J; Chen H
    EMBO Rep; 2022 Nov; 23(11):e54853. PubMed ID: 36129789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The dynamic role of cohesin in maintaining human genome architecture.
    Agarwal A; Korsak S; Choudhury A; Plewczynski D
    Bioessays; 2023 Oct; 45(10):e2200240. PubMed ID: 37603403
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SMC Complexes: Universal DNA Looping Machines with Distinct Regulators.
    van Ruiten MS; Rowland BD
    Trends Genet; 2018 Jun; 34(6):477-487. PubMed ID: 29606284
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome Topology Control of Antigen Receptor Gene Assembly.
    Allyn BM; Lee KD; Bassing CH
    J Immunol; 2020 May; 204(10):2617-2626. PubMed ID: 32366683
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cutting edge: developmental stage-specific recruitment of cohesin to CTCF sites throughout immunoglobulin loci during B lymphocyte development.
    Degner SC; Wong TP; Jankevicius G; Feeney AJ
    J Immunol; 2009 Jan; 182(1):44-8. PubMed ID: 19109133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture.
    Gassler J; Brandão HB; Imakaev M; Flyamer IM; Ladstätter S; Bickmore WA; Peters JM; Mirny LA; Tachibana K
    EMBO J; 2017 Dec; 36(24):3600-3618. PubMed ID: 29217590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chromatin jets define the properties of cohesin-driven in vivo loop extrusion.
    Guo Y; Al-Jibury E; Garcia-Millan R; Ntagiantas K; King JWD; Nash AJ; Galjart N; Lenhard B; Rueckert D; Fisher AG; Pruessner G; Merkenschlager M
    Mol Cell; 2022 Oct; 82(20):3769-3780.e5. PubMed ID: 36182691
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cohesin, CTCF and lymphocyte antigen receptor locus rearrangement.
    Seitan VC; Krangel MS; Merkenschlager M
    Trends Immunol; 2012 Apr; 33(4):153-9. PubMed ID: 22440186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression.
    Vos ESM; Valdes-Quezada C; Huang Y; Allahyar A; Verstegen MJAM; Felder AK; van der Vegt F; Uijttewaal ECH; Krijger PHL; de Laat W
    Mol Cell; 2021 Aug; 81(15):3082-3095.e6. PubMed ID: 34197738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co-depletion of NIPBL and WAPL balance cohesin activity to correct gene misexpression.
    Luppino JM; Field A; Nguyen SC; Park DS; Shah PP; Abdill RJ; Lan Y; Yunker R; Jain R; Adelman K; Joyce EF
    PLoS Genet; 2022 Nov; 18(11):e1010528. PubMed ID: 36449519
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Condensins and cohesins - one of these things is not like the other!
    Skibbens RV
    J Cell Sci; 2019 Feb; 132(3):. PubMed ID: 30733374
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SMC complexes can traverse physical roadblocks bigger than their ring size.
    Pradhan B; Barth R; Kim E; Davidson IF; Bauer B; van Laar T; Yang W; Ryu JK; van der Torre J; Peters JM; Dekker C
    Cell Rep; 2022 Oct; 41(3):111491. PubMed ID: 36261017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Energetics and Physiological Impact of Cohesin Extrusion.
    Vian L; Pękowska A; Rao SSP; Kieffer-Kwon KR; Jung S; Baranello L; Huang SC; El Khattabi L; Dose M; Pruett N; Sanborn AL; Canela A; Maman Y; Oksanen A; Resch W; Li X; Lee B; Kovalchuk AL; Tang Z; Nelson S; Di Pierro M; Cheng RR; Machol I; St Hilaire BG; Durand NC; Shamim MS; Stamenova EK; Onuchic JN; Ruan Y; Nussenzweig A; Levens D; Aiden EL; Casellas R
    Cell; 2018 May; 173(5):1165-1178.e20. PubMed ID: 29706548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cohesin Biology: From Passive Rings to Molecular Motors.
    Mayerova N; Cipak L; Gregan J
    Trends Genet; 2020 Jun; 36(6):387-389. PubMed ID: 32396831
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.