BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 33423005)

  • 1. Geochemical investigations of noble metal-bearing ores: Synchrotron-based micro-analyses and microcosm bioleaching studies.
    Brinza L; Ahmed I; Cismasiu CM; Ardelean I; Breaban IG; Doroftei F; Ignatyev K; Moisescu C; Neamtu M
    Chemosphere; 2021 May; 270():129388. PubMed ID: 33423005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms for Pd-Au enrichment in porphyry-epithermal ores of the Elatsite deposit, Bulgaria.
    González-Jiménez JM; Piña R; Kerestedjian TN; Gervilla F; Borrajo I; Pablo JF; Proenza JA; Tornos F; Roqué J; Nieto F
    J Geochem Explor; 2021 Jan; 220():106664. PubMed ID: 33041466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolution of Cu and Zn-bearing ore by indigenous iron-oxidizing bacterial consortia supplemented with dried bamboo sawdust and variations in bacterial structural dynamics: A new concept in bioleaching.
    Sajjad W; Zheng G; Ma X; Xu W; Ali B; Rafiq M; Zada S; Irfan M; Zeman J
    Sci Total Environ; 2020 Mar; 709():136136. PubMed ID: 31884267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence of cell surface iron speciation of acidophilic iron-oxidizing microorganisms in indirect bioleaching process.
    Nie ZY; Liu HC; Xia JL; Yang Y; Zhen XJ; Zhang LJ; Qiu GZ
    Biometals; 2016 Feb; 29(1):25-37. PubMed ID: 26645388
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques.
    Fantauzzi M; Licheri C; Atzei D; Loi G; Elsener B; Rossi G; Rossi A
    Anal Bioanal Chem; 2011 Oct; 401(7):2237-48. PubMed ID: 21847529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the relation between adhesion force and chalcopyrite-bioleaching by Acidithiobacillus ferrooxidans.
    Zhu J; Wang Q; Zhou S; Li Q; Gan M; Jiang H; Qin W; Liu X; Hu Y; Qiu G
    Colloids Surf B Biointerfaces; 2015 Feb; 126():351-7. PubMed ID: 25511439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans.
    Makita M; Esperón M; Pereyra B; López A; Orrantia E
    BMC Biotechnol; 2004 Oct; 4():22. PubMed ID: 15482595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite.
    Romo E; Weinacker DF; Zepeda AB; Figueroa CA; Chavez-Crooker P; Farias JG
    Braz J Microbiol; 2013; 44(2):523-8. PubMed ID: 24294251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Newly Isolated
    Vardanyan N; Badalyan H; Markosyan L; Vardanyan A; Zhang R; Sand W
    Front Microbiol; 2020; 11():1802. PubMed ID: 32849411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined effect of silver ion and pyrite on AMD formation generated by chalcopyrite bio-dissolution.
    Liao R; Yang B; Huang X; Hong M; Yu S; Liu S; Wang J; Qiu G
    Chemosphere; 2021 Sep; 279():130516. PubMed ID: 33878694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-Objective Optimization of Copper Bioleaching: Comparative Study of Pure and Co-Cultured Cultivation.
    Rakhshani Y; Rahpeyma SS; Tabandeh F; Arabnezhad M; Azimi A; Raheb J
    Iran J Biotechnol; 2023 Apr; 21(2):e3278. PubMed ID: 37228625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchrotron radiation based STXM analysis and micro-XRF mapping of differential expression of extracellular thiol groups by Acidithiobacillus ferrooxidans grown on Fe(2+) and S(0).
    Xia JL; Liu HC; Nie ZY; Peng AA; Zhen XJ; Yang Y; Zhang XL
    J Microbiol Methods; 2013 Sep; 94(3):257-61. PubMed ID: 23850802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimization of metal sulphides bioleaching from mine wastes into the aquatic environment.
    Piervandi Z; Khodadadi Darban A; Mousavi SM; Abdollahy M; Asadollahfardi G; Funari V; Dinelli E
    Ecotoxicol Environ Saf; 2019 Oct; 182():109443. PubMed ID: 31398782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acidophilic Iron- and Sulfur-Oxidizing Bacteria,
    Yi Q; Wu S; Southam G; Robertson L; You F; Liu Y; Wang S; Saha N; Webb R; Wykes J; Chan TS; Lu YR; Huang L
    Environ Sci Technol; 2021 Jun; 55(12):8020-8034. PubMed ID: 34043324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active destruction of pyrite passivation by ozone oxidation of a biotic leaching system.
    Lv X; Zhao H; Zhang Y; Yan Z; Zhao Y; Zheng H; Liu W; Xie J; Qiu G
    Chemosphere; 2021 Aug; 277():130335. PubMed ID: 33780674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans.
    Zhao H; Wang J; Hu M; Qin W; Zhang Y; Qiu G
    Bioresour Technol; 2013 Dec; 149():71-6. PubMed ID: 24084207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effective bioleaching of low-grade copper ores: Insights from microbial cross experiments.
    Wang X; Ma L; Wu J; Xiao Y; Tao J; Liu X
    Bioresour Technol; 2020 Jul; 308():123273. PubMed ID: 32247948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of pyrite, pyrrhotite, and chalcopyrite dissolution by Acidithiobacillus ferrooxidans.
    Kocaman AT; Cemek M; Edwards KJ
    Can J Microbiol; 2016 Aug; 62(8):629-42. PubMed ID: 27332502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of organic acids on pentlandite bioleaching by
    Giese EC
    3 Biotech; 2021 Apr; 11(4):165. PubMed ID: 33786282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation.
    Tao H; Dongwei L
    Biotechnol Rep (Amst); 2014 Dec; 4():107-119. PubMed ID: 28626669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.