These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 33423287)
1. Growth-regulating factor 5 (GRF5)-mediated gene regulatory network promotes leaf growth and expansion in poplar. Wu W; Li J; Wang Q; Lv K; Du K; Zhang W; Li Q; Kang X; Wei H New Phytol; 2021 Apr; 230(2):612-628. PubMed ID: 33423287 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome comparison of different ploidy reveals the mechanism of photosynthetic efficiency superiority of triploid poplar. Wu W; Liao T; Du K; Wei H; Kang X Genomics; 2021 Jul; 113(4):2211-2220. PubMed ID: 34022341 [TBL] [Abstract][Full Text] [Related]
3. Ploidy and hybridity effects on leaf size, cell size and related genes expression in triploids, diploids and their parents in Populus. Zhang Y; Wang B; Qi S; Dong M; Wang Z; Li Y; Chen S; Li B; Zhang J Planta; 2019 Mar; 249(3):635-646. PubMed ID: 30327883 [TBL] [Abstract][Full Text] [Related]
4. The interplay of growth-regulating factor 5 and BZR1 in coregulating chlorophyll degradation in poplar. Chen H; Wu W; Du K; Ling A; Kang X Plant Cell Environ; 2024 May; ():. PubMed ID: 38783695 [TBL] [Abstract][Full Text] [Related]
5. Insights into the Molecular Regulation of Lignin Content in Triploid Poplar Leaves. Xu T; Zhang S; Du K; Yang J; Kang X Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562994 [TBL] [Abstract][Full Text] [Related]
6. MYC2 regulates stomatal density and water use efficiency via targeting EPF2/EPFL4/EPFL9 in poplar. Xia Y; Jiang S; Wu W; Du K; Kang X New Phytol; 2024 Mar; 241(6):2506-2522. PubMed ID: 38258389 [TBL] [Abstract][Full Text] [Related]
7. Characterization of poplar growth-regulating factors and analysis of their function in leaf size control. Wang J; Zhou H; Zhao Y; Sun P; Tang F; Song X; Lu MZ BMC Plant Biol; 2020 Nov; 20(1):509. PubMed ID: 33153427 [TBL] [Abstract][Full Text] [Related]
8. Growth-regulating factor 15 is required for leaf size control in Populus. Zhou H; Song X; Wei K; Zhao Y; Jiang C; Wang J; Tang F; Lu M Tree Physiol; 2019 Mar; 39(3):381-390. PubMed ID: 30307572 [TBL] [Abstract][Full Text] [Related]
9. PuHox52-mediated hierarchical multilayered gene regulatory network promotes adventitious root formation in Populus ussuriensis. Wei M; Liu Q; Wang Z; Yang J; Li W; Chen Y; Lu H; Nie J; Liu B; Lv K; Mao X; Chen S; Sanders J; Wei H; Li C New Phytol; 2020 Nov; 228(4):1369-1385. PubMed ID: 32589766 [TBL] [Abstract][Full Text] [Related]
10. Construction of two regulatory networks related to salt stress and lignocellulosic synthesis under salt stress based on a Populus davidiana × P. bolleana transcriptome analysis. Lei X; Liu Z; Xie Q; Fang J; Wang C; Li J; Wang C; Gao C Plant Mol Biol; 2022 Aug; 109(6):689-702. PubMed ID: 35486290 [TBL] [Abstract][Full Text] [Related]
11. Tree age-dependent changes in photosynthetic and respiratory CO2 exchange in leaves of micropropagated diploid, triploid and hybrid aspen. Pärnik T; Ivanova H; Keerberg O; Vardja R; Niinemets U Tree Physiol; 2014 Jun; 34(6):585-94. PubMed ID: 24898219 [TBL] [Abstract][Full Text] [Related]
12. Comparative genomic analysis of the Growth-Regulating Factors-Interacting Factors (GIFs) in six Salicaceae species and functional analysis of PeGIF3 reveals their regulatory role in Populus heteromorphic leaves. Yang Y; Sun J; Qiu C; Jiao P; Wang H; Wu Z; Li Z BMC Genomics; 2024 Mar; 25(1):317. PubMed ID: 38549059 [TBL] [Abstract][Full Text] [Related]
13. Functional repression of PtSND2 represses growth and development by disturbing auxin biosynthesis, transport and signaling in transgenic poplar. Wang H; Tang R; Wang C; Qi Q; Gai Y; Jiang X; Zhang H Tree Physiol; 2015 Jan; 35(1):95-105. PubMed ID: 25516528 [TBL] [Abstract][Full Text] [Related]
14. The bZIP53-IAA4 module inhibits adventitious root development in Populus. Zhang Y; Yang X; Cao P; Xiao Z; Zhan C; Liu M; Nvsvrot T; Wang N J Exp Bot; 2020 Jun; 71(12):3485-3498. PubMed ID: 32076710 [TBL] [Abstract][Full Text] [Related]
15. A systems biology model of the regulatory network in Populus leaves reveals interacting regulators and conserved regulation. Street NR; Jansson S; Hvidsten TR BMC Plant Biol; 2011 Jan; 11():13. PubMed ID: 21232107 [TBL] [Abstract][Full Text] [Related]
16. Construction of a hierarchical gene regulatory network centered around a transcription factor. Wei H Brief Bioinform; 2019 May; 20(3):1021-1031. PubMed ID: 29186304 [TBL] [Abstract][Full Text] [Related]
18. PtrARF2.1 Is Involved in Regulation of Leaf Development and Lignin Biosynthesis in Poplar Trees. Fu Y; Win P; Zhang H; Li C; Shen Y; He F; Luo K Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31450644 [TBL] [Abstract][Full Text] [Related]
19. ABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating ADF5 in Populus euphratica. Yang Y; Li HG; Wang J; Wang HL; He F; Su Y; Zhang Y; Feng CH; Niu M; Li Z; Liu C; Yin W; Xia X J Exp Bot; 2020 Dec; 71(22):7270-7285. PubMed ID: 32822499 [TBL] [Abstract][Full Text] [Related]
20. Populus simonii × Populus nigra WRKY70 is involved in salt stress and leaf blight disease responses. Zhao H; Jiang J; Li K; Liu G Tree Physiol; 2017 Jun; 37(6):827-844. PubMed ID: 28369503 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]