These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 33423359)
21. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO Pacella SR; Brown CA; Waldbusser GG; Labiosa RG; Hales B Proc Natl Acad Sci U S A; 2018 Apr; 115(15):3870-3875. PubMed ID: 29610330 [TBL] [Abstract][Full Text] [Related]
22. Responses of Intertidal Bacterial Biofilm Communities to Increasing pCO Kerfahi D; Harvey BP; Agostini S; Kon K; Huang R; Adams JM; Hall-Spencer JM Mar Biotechnol (NY); 2020 Dec; 22(6):727-738. PubMed ID: 32185542 [TBL] [Abstract][Full Text] [Related]
23. Decreased Diversity and Abundance of Marine Invertebrates at CO Hall-Spencer JM; Belfiore G; Tomatsuri M; Porzio L; Harvey BP; Agostini S; Kon K Zoolog Sci; 2022 Feb; 39(1):41-51. PubMed ID: 35106992 [TBL] [Abstract][Full Text] [Related]
24. Microhabitat change alters abundances of competing species and decreases species richness under ocean acidification. Nagelkerken I; Goldenberg SU; Coni EOC; Connell SD Sci Total Environ; 2018 Dec; 645():615-622. PubMed ID: 30029136 [TBL] [Abstract][Full Text] [Related]
25. Marine bacterial communities are resistant to elevated carbon dioxide levels. Oliver AE; Newbold LK; Whiteley AS; van der Gast CJ Environ Microbiol Rep; 2014 Dec; 6(6):574-82. PubMed ID: 25756110 [TBL] [Abstract][Full Text] [Related]
26. Functional diversity and metabolic response in benthic communities along an ocean acidification gradient. Berlino M; Mangano MC; Di Bona G; Lucchese M; Terzo SMC; De Vittor C; D'Alessandro M; Esposito V; Gambi MC; Del Negro P; Sarà G Mar Environ Res; 2024 Jun; 198():106520. PubMed ID: 38685145 [TBL] [Abstract][Full Text] [Related]
27. Ocean acidification affects microbial community and invertebrate settlement on biofilms. Nelson KS; Baltar F; Lamare MD; Morales SE Sci Rep; 2020 Feb; 10(1):3274. PubMed ID: 32094391 [TBL] [Abstract][Full Text] [Related]
28. Feedback mechanisms stabilise degraded turf algal systems at a CO Harvey BP; Allen R; Agostini S; Hoffmann LJ; Kon K; Summerfield TC; Wada S; Hall-Spencer JM Commun Biol; 2021 Feb; 4(1):219. PubMed ID: 33594188 [TBL] [Abstract][Full Text] [Related]
29. Recruitment and Succession in a Tropical Benthic Community in Response to In-Situ Ocean Acidification. Crook ED; Kroeker KJ; Potts DC; Rebolledo-Vieyra M; Hernandez-Terrones LM; Paytan A PLoS One; 2016; 11(1):e0146707. PubMed ID: 26784986 [TBL] [Abstract][Full Text] [Related]
30. Boosted fish abundance associated with Posidonia oceanica meadows in temperate shallow CO Mirasole A; Badalamenti F; Di Franco A; Gambi MC; Teixidó N Sci Total Environ; 2021 Jun; 771():145438. PubMed ID: 33548697 [TBL] [Abstract][Full Text] [Related]
31. Changes in microbial communities in coastal sediments along natural CO2 gradients at a volcanic vent in Papua New Guinea. Raulf FF; Fabricius K; Uthicke S; de Beer D; Abed RM; Ramette A Environ Microbiol; 2015 Oct; 17(10):3678-91. PubMed ID: 25471738 [TBL] [Abstract][Full Text] [Related]
32. Effects of "Reduced" and "Business-As-Usual" CO2 Emission Scenarios on the Algal Territories of the Damselfish Pomacentrus wardi (Pomacentridae). Bender D; Champ CM; Kline D; Diaz-Pulido G; Dove S PLoS One; 2015; 10(6):e0131442. PubMed ID: 26121163 [TBL] [Abstract][Full Text] [Related]
33. Divergent ecosystem responses within a benthic marine community to ocean acidification. Kroeker KJ; Micheli F; Gambi MC; Martz TR Proc Natl Acad Sci U S A; 2011 Aug; 108(35):14515-20. PubMed ID: 21844331 [TBL] [Abstract][Full Text] [Related]
35. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Hall-Spencer JM; Rodolfo-Metalpa R; Martin S; Ransome E; Fine M; Turner SM; Rowley SJ; Tedesco D; Buia MC Nature; 2008 Jul; 454(7200):96-9. PubMed ID: 18536730 [TBL] [Abstract][Full Text] [Related]
36. Intertidal epilithic bacteria diversity changes along a naturally occurring carbon dioxide and pH gradient. Taylor JD; Ellis R; Milazzo M; Hall-Spencer JM; Cunliffe M FEMS Microbiol Ecol; 2014 Sep; 89(3):670-8. PubMed ID: 24939799 [TBL] [Abstract][Full Text] [Related]
37. Functional loss in herbivores drives runaway expansion of weedy algae in a near-future ocean. Ferreira CM; Nagelkerken I; Goldenberg SU; Walden G; Leung JYS; Connell SD Sci Total Environ; 2019 Dec; 695():133829. PubMed ID: 31421342 [TBL] [Abstract][Full Text] [Related]
38. Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak. Langer JAF; Sharma R; Schmidt SI; Bahrdt S; Horn HG; Algueró-Muñiz M; Nam B; Achterberg EP; Riebesell U; Boersma M; Thines M; Schwenk K PLoS One; 2017; 12(4):e0175808. PubMed ID: 28445483 [TBL] [Abstract][Full Text] [Related]
39. Who wins or loses matters: Strongly interacting consumers drive seagrass resistance under ocean acidification. Lee J; Hughes BB; Kroeker KJ; Owens A; Wong C; Micheli F Sci Total Environ; 2022 Feb; 808():151594. PubMed ID: 34826463 [TBL] [Abstract][Full Text] [Related]
40. In situ changes of tropical crustose coralline algae along carbon dioxide gradients. Fabricius KE; Kluibenschedl A; Harrington L; Noonan S; De'ath G Sci Rep; 2015 Apr; 5():9537. PubMed ID: 25835382 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]