These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33423490)

  • 21. 3D plotting of highly uniform Sr
    Zhu H; Zhai D; Lin C; Zhang Y; Huan Z; Chang J; Wu C
    J Mater Chem B; 2016 Oct; 4(37):6200-6212. PubMed ID: 32263632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction.
    Chen L; Deng C; Li J; Yao Q; Chang J; Wang L; Wu C
    Biomaterials; 2019 Mar; 196():138-150. PubMed ID: 29643002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The synergetic effect of nano-structures and silicon-substitution on the properties of hydroxyapatite scaffolds for bone regeneration.
    Xia L; Zhang N; Wang X; Zhou Y; Mao L; Liu J; Jiang X; Zhang Z; Chang J; Lin K; Fang B
    J Mater Chem B; 2016 May; 4(19):3313-3323. PubMed ID: 32263266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and characterization of novel lithium magnesium phosphate bioceramic scaffolds facilitating bone generation.
    He F; Yuan X; Lu T; Wang Y; Feng S; Shi X; Wang L; Ye J; Yang H
    J Mater Chem B; 2022 Jun; 10(21):4040-4047. PubMed ID: 35506906
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells.
    Xia L; Lin K; Jiang X; Fang B; Xu Y; Liu J; Zeng D; Zhang M; Zhang X; Chang J; Zhang Z
    Biomaterials; 2014 Oct; 35(30):8514-27. PubMed ID: 25002263
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-Printed Flat-Bone-Mimetic Bioceramic Scaffolds for Cranial Restoration.
    Zhang Y; He F; Zhang Q; Lu H; Yan S; Shi X
    Research (Wash D C); 2023; 6():0255. PubMed ID: 37899773
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D-printed bioceramic scaffolds with antibacterial and osteogenic activity.
    Zhang Y; Zhai D; Xu M; Yao Q; Zhu H; Chang J; Wu C
    Biofabrication; 2017 Jun; 9(2):025037. PubMed ID: 28631614
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots.
    Zheng P; Yao Q; Mao F; Liu N; Xu Y; Wei B; Wang L
    Mol Med Rep; 2017 Oct; 16(4):5078-5084. PubMed ID: 28849142
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D-Printed Bioactive Ca
    Yang C; Wang X; Ma B; Zhu H; Huan Z; Ma N; Wu C; Chang J
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5757-5767. PubMed ID: 28117976
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced osteogenic differentiation of human bone-derived mesenchymal stem cells in 3-dimensional printed porous titanium scaffolds by static magnetic field through up-regulating Smad4.
    He Y; Yu L; Liu J; Li Y; Wu Y; Huang Z; Wu D; Wang H; Wu Z; Qiu G
    FASEB J; 2019 May; 33(5):6069-6081. PubMed ID: 30763124
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Favorable osteogenic activity of iron doped in silicocarnotite bioceramic: In vitro and
    Zhang J; Deng F; Liu X; Ge Y; Zeng Y; Zhai Z; Ning C; Li H
    J Orthop Translat; 2022 Jan; 32():103-111. PubMed ID: 35228992
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pore size regulates mesenchymal stem cell response to Bioglass-loaded composite scaffolds.
    Vissers CAB; Harvestine JN; Leach JK
    J Mater Chem B; 2015 Nov; 3(44):8650-8658. PubMed ID: 32262722
    [TBL] [Abstract][Full Text] [Related]  

  • 33. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity.
    Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C
    Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D-printed photoluminescent bioactive scaffolds with biomimetic elastomeric surface for enhanced bone tissue engineering.
    Chen M; Zhao F; Li Y; Wang M; Chen X; Lei B
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110153. PubMed ID: 31753368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects.
    Liu A; Sun M; Shao H; Yang X; Ma C; He D; Gao Q; Liu Y; Yan S; Xu S; He Y; Fu J; Gou Z
    J Mater Chem B; 2016 Jun; 4(22):3945-3958. PubMed ID: 32263094
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro assessment of three-dimensionally plotted nagelschmidtite bioceramic scaffolds with varied macropore morphologies.
    Xu M; Zhai D; Chang J; Wu C
    Acta Biomater; 2014 Jan; 10(1):463-76. PubMed ID: 24071000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-Dimensional Printed Titanium Scaffolds Enhance Osteogenic Differentiation and New Bone Formation by Cultured Adipose Tissue-Derived Stem Cells Through the IGF-1R/AKT/Mammalian Target of Rapamycin Complex 1 (mTORC1) Pathway.
    Zhou X; Zhang D; Wang M; Zhang D; Xu Y
    Med Sci Monit; 2019 Oct; 25():8043-8054. PubMed ID: 31655847
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D robocasting magnesium-doped wollastonite/TCP bioceramic scaffolds with improved bone regeneration capacity in critical sized calvarial defects.
    Shao H; Liu A; Ke X; Sun M; He Y; Yang X; Fu J; Zhang L; Yang G; Liu Y; Xu S; Gou Z
    J Mater Chem B; 2017 Apr; 5(16):2941-2951. PubMed ID: 32263987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo.
    Dasgupta S; Maji K; Nandi SK
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuning filament composition and microstructure of 3D-printed bioceramic scaffolds facilitate bone defect regeneration and repair.
    Chen Y; Huang J; Liu J; Wei Y; Yang X; Lei L; Chen L; Wu Y; Gou Z
    Regen Biomater; 2021 Mar; 8(2):rbab007. PubMed ID: 33738121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.