These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 33424024)
1. A robust unsupervised machine-learning method to quantify the morphological heterogeneity of cells and nuclei. Phillip JM; Han KS; Chen WC; Wirtz D; Wu PH Nat Protoc; 2021 Feb; 16(2):754-774. PubMed ID: 33424024 [TBL] [Abstract][Full Text] [Related]
2. An analytical tool that quantifies cellular morphology changes from three-dimensional fluorescence images. Haass-Koffler CL; Naeemuddin M; Bartlett SE J Vis Exp; 2012 Aug; (66):e4233. PubMed ID: 22951512 [TBL] [Abstract][Full Text] [Related]
3. Automated quantification and integrative analysis of 2D and 3D mitochondrial shape and network properties. Nikolaisen J; Nilsson LI; Pettersen IK; Willems PH; Lorens JB; Koopman WJ; Tronstad KJ PLoS One; 2014; 9(7):e101365. PubMed ID: 24988307 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional visualization and quantitative analysis of cervical cell nuclei with confocal laser scanning microscopy. Choi HJ; Choi IH; Kim TY; Cho NH; Choi HK Anal Quant Cytol Histol; 2005 Jun; 27(3):174-80. PubMed ID: 16121640 [TBL] [Abstract][Full Text] [Related]
5. Segmentation of densely populated cell nuclei from confocal image stacks using 3D non-parametric shape priors. Ong LL; Wang M; Dauwels J; Asada HH Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5526-9. PubMed ID: 25571246 [TBL] [Abstract][Full Text] [Related]
6. Rotation Invariant Clustering of 3D Cell Nuclei Shapes Wagner P; Morath JP; Zychlinsky A; Muller KR; Samek W Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6022-6027. PubMed ID: 31947219 [TBL] [Abstract][Full Text] [Related]
7. An automatic segmentation algorithm for 3D cell cluster splitting using volumetric confocal images. Indhumathi C; Cai YY; Guan YQ; Opas M J Microsc; 2011 Jul; 243(1):60-76. PubMed ID: 21288236 [TBL] [Abstract][Full Text] [Related]
8. A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin. Ghanta S; Jordan MI; Kose K; Brooks DH; Rajadhyaksha M; Dy JG IEEE Trans Image Process; 2017 Jan; 26(1):172-184. PubMed ID: 27723590 [TBL] [Abstract][Full Text] [Related]
9. Analysis of in vivo single cell behavior by high throughput, human-in-the-loop segmentation of three-dimensional images. Chiang M; Hallman S; Cinquin A; de Mochel NR; Paz A; Kawauchi S; Calof AL; Cho KW; Fowlkes CC; Cinquin O BMC Bioinformatics; 2015 Nov; 16():397. PubMed ID: 26607933 [TBL] [Abstract][Full Text] [Related]
10. Automatic three-dimensional segmentation of mouse embryonic stem cell nuclei by utilising multiple channels of confocal fluorescence images. Chang YH; Yokota H; Abe K; Tasi MD; Chu SL J Microsc; 2021 Jan; 281(1):57-75. PubMed ID: 32720710 [TBL] [Abstract][Full Text] [Related]
11. GIANI - open-source software for automated analysis of 3D microscopy images. Barry DJ; Gerri C; Bell DM; D'Antuono R; Niakan KK J Cell Sci; 2022 May; 135(10):. PubMed ID: 35502739 [TBL] [Abstract][Full Text] [Related]
12. Grading of renal cell carcinoma by 3D morphological analysis of cell nuclei. Choi HJ; Choi HK Comput Biol Med; 2007 Sep; 37(9):1334-41. PubMed ID: 17331492 [TBL] [Abstract][Full Text] [Related]
13. CellWalker: a user-friendly and modular computational pipeline for morphological analysis of microscopy images. Khare H; Dongo Mendoza N; Zurzolo C Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38060265 [TBL] [Abstract][Full Text] [Related]
14. FocAn: automated 3D analysis of DNA repair foci in image stacks acquired by confocal fluorescence microscopy. Memmel S; Sisario D; Zimmermann H; Sauer M; Sukhorukov VL; Djuzenova CS; Flentje M BMC Bioinformatics; 2020 Jan; 21(1):27. PubMed ID: 31992200 [TBL] [Abstract][Full Text] [Related]
15. ImageJ SurfCut: a user-friendly pipeline for high-throughput extraction of cell contours from 3D image stacks. Erguvan Ö; Louveaux M; Hamant O; Verger S BMC Biol; 2019 May; 17(1):38. PubMed ID: 31072374 [TBL] [Abstract][Full Text] [Related]
16. Rapid 3D phenotypic analysis of neurons and organoids using data-driven cell segmentation-free machine learning. Mergenthaler P; Hariharan S; Pemberton JM; Lourenco C; Penn LZ; Andrews DW PLoS Comput Biol; 2021 Feb; 17(2):e1008630. PubMed ID: 33617523 [TBL] [Abstract][Full Text] [Related]
17. Morphological Analysis of Leaf Epidermis Pavement Cells with PaCeQuant. Möller B; Poeschl Y; Klemm S; Bürstenbinder K Methods Mol Biol; 2019; 1992():329-349. PubMed ID: 31148049 [TBL] [Abstract][Full Text] [Related]
18. Robust and automated detection of subcellular morphological motifs in 3D microscopy images. Driscoll MK; Welf ES; Jamieson AR; Dean KM; Isogai T; Fiolka R; Danuser G Nat Methods; 2019 Oct; 16(10):1037-1044. PubMed ID: 31501548 [TBL] [Abstract][Full Text] [Related]
19. Implementation of accurate and fast DNA cytometry by confocal microscopy in 3D. Ploeger LS; Huisman A; van der Gugten J; van der Giezen DM; Beliën JA; Abbaker AY; Dullens HF; Grizzle W; Poulin NM; Meijer GA; van Diest PJ Cell Oncol; 2005; 27(4):225-30. PubMed ID: 16308471 [TBL] [Abstract][Full Text] [Related]
20. Combined confocal and wide-field high-resolution cytometry of fluorescent in situ hybridization-stained cells. Kozubek M; Kozubek S; Lukásová E; Bártová E; Skalníková M; Matula P; Matula P; Jirsová P; Cafourková A; Koutná I Cytometry; 2001 Sep; 45(1):1-12. PubMed ID: 11598941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]