These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 33424163)

  • 1. Identification of a small set of genes commonly regulated in rice roots in response to beneficial rhizobacteria.
    Valette M; Rey M; Doré J; Gerin F; Wisniewski-Dyé F
    Physiol Mol Biol Plants; 2020 Dec; 26(12):2537-2551. PubMed ID: 33424163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation.
    Drogue B; Sanguin H; Chamam A; Mozar M; Llauro C; Panaud O; Prigent-Combaret C; Picault N; Wisniewski-Dyé F
    Front Plant Sci; 2014; 5():607. PubMed ID: 25414716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A common metabolomic signature is observed upon inoculation of rice roots with various rhizobacteria.
    Valette M; Rey M; Gerin F; Comte G; Wisniewski-Dyé F
    J Integr Plant Biol; 2020 Feb; 62(2):228-246. PubMed ID: 30920733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum-Oryza sativa association.
    Chamam A; Sanguin H; Bellvert F; Meiffren G; Comte G; Wisniewski-Dyé F; Bertrand C; Prigent-Combaret C
    Phytochemistry; 2013 Mar; 87():65-77. PubMed ID: 23266268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential Genetic Strategies of Burkholderia vietnamiensis and Paraburkholderia kururiensis for Root Colonization of Oryza sativa subsp.
    Wallner A; Busset N; Lachat J; Guigard L; King E; Rimbault I; Mergaert P; Béna G; Moulin L
    Appl Environ Microbiol; 2022 Jul; 88(14):e0064222. PubMed ID: 35862731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential responses of Oryza sativa secondary metabolism to biotic interactions with cooperative, commensal and phytopathogenic bacteria.
    Chamam A; Wisniewski-Dyé F; Comte G; Bertrand C; Prigent-Combaret C
    Planta; 2015 Dec; 242(6):1439-52. PubMed ID: 26303982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice.
    Mehnaz S; Mirza MS; Haurat J; Bally R; Normand P; Bano A; Malik KA
    Can J Microbiol; 2001 Feb; 47(2):110-7. PubMed ID: 11261489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Common gene expression patterns are observed in rice roots during associations with plant growth-promoting bacteria, Herbaspirillum seropedicae and Azospirillum brasilense.
    Wiggins G; Thomas J; Rahmatallah Y; Deen C; Haynes A; Degon Z; Glazko G; Mukherjee A
    Sci Rep; 2022 May; 12(1):8827. PubMed ID: 35614083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhizosphere bacterial signalling: a love parade beneath our feet.
    Somers E; Vanderleyden J; Srinivasan M
    Crit Rev Microbiol; 2004; 30(4):205-40. PubMed ID: 15646398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing PGPR inoculation through exogenous foliar application of salicylic acid and microbial extracts for improving rice growth.
    Bowya T; Balachandar D
    J Basic Microbiol; 2020 Nov; 60(11-12):950-961. PubMed ID: 33025611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome wide profiling of Azospirillum lipoferum 4B gene expression during interaction with rice roots.
    Drogue B; Sanguin H; Borland S; Prigent-Combaret C; Wisniewski-Dyé F
    FEMS Microbiol Ecol; 2014 Feb; 87(2):543-55. PubMed ID: 24283406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-seq reveals differentially expressed genes in rice (Oryza sativa) roots during interactions with plant-growth promoting bacteria, Azospirillum brasilense.
    Thomas J; Kim HR; Rahmatallah Y; Wiggins G; Yang Q; Singh R; Glazko G; Mukherjee A
    PLoS One; 2019; 14(5):e0217309. PubMed ID: 31120967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jasmonic Acid, Not Salicyclic Acid Restricts Endophytic Root Colonization of Rice.
    Chen X; Marszałkowska M; Reinhold-Hurek B
    Front Plant Sci; 2019; 10():1758. PubMed ID: 32063914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria.
    do Amaral FP; Pankievicz VC; Arisi AC; de Souza EM; Pedrosa F; Stacey G
    Plant Mol Biol; 2016 Apr; 90(6):689-97. PubMed ID: 26873699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat.
    Khalid A; Arshad M; Zahir ZA
    J Appl Microbiol; 2004; 96(3):473-80. PubMed ID: 14962127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Banana (Musa acuminata) transcriptome profiling in response to rhizobacteria: Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006.
    Gamez RM; Rodríguez F; Vidal NM; Ramirez S; Vera Alvarez R; Landsman D; Mariño-Ramírez L
    BMC Genomics; 2019 May; 20(1):378. PubMed ID: 31088352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of a calcium-dependent protein kinase involved in the Azospirillum growth promotion in rice.
    Ribaudo CM; Curá JA; Cantore ML
    World J Microbiol Biotechnol; 2017 Feb; 33(2):22. PubMed ID: 28044270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum.
    Walker V; Bertrand C; Bellvert F; Moënne-Loccoz Y; Bally R; Comte G
    New Phytol; 2011 Jan; 189(2):494-506. PubMed ID: 20946131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects.
    Steenhoudt O; Vanderleyden J
    FEMS Microbiol Rev; 2000 Oct; 24(4):487-506. PubMed ID: 10978548
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion.
    Combes-Meynet E; Pothier JF; Moënne-Loccoz Y; Prigent-Combaret C
    Mol Plant Microbe Interact; 2011 Feb; 24(2):271-84. PubMed ID: 21043573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.