These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 33424392)
1. Optimization of nutritional and environmental conditions for pyocyanin production by urine isolates of Elbargisy RM Saudi J Biol Sci; 2021 Jan; 28(1):993-1000. PubMed ID: 33424392 [No Abstract] [Full Text] [Related]
2. Isolation and characterization of nutrient dependent pyocyanin from Pseudomonas aeruginosa and its dye and agrochemical properties. DeBritto S; Gajbar TD; Satapute P; Sundaram L; Lakshmikantha RY; Jogaiah S; Ito SI Sci Rep; 2020 Jan; 10(1):1542. PubMed ID: 32005900 [TBL] [Abstract][Full Text] [Related]
3. Use of an improved cetrimide agar medium and other culture methods for Pseudomonas aeruginosa. Brown VI; Lowbury EJ J Clin Pathol; 1965 Nov; 18(6):752-6. PubMed ID: 4954265 [TBL] [Abstract][Full Text] [Related]
4. Effect of fetal and adult bovine serum on pyocyanin production in Moayedi A; Nowroozi J; Sepahy AA Iran J Basic Med Sci; 2017 Dec; 20(12):1331-1338. PubMed ID: 29238468 [TBL] [Abstract][Full Text] [Related]
5. Optimized Production of a Redox Metabolite (pyocyanin) by Bacame-Valenzuela FJ; Pérez-Garcia JA; Figueroa-Magallón ML; Espejel-Ayala F; Ortiz-Frade LA; Reyes-Vidal Y Microorganisms; 2020 Oct; 8(10):. PubMed ID: 33050473 [No Abstract] [Full Text] [Related]
6. Reduction of virulence factor pyocyanin production in multidrug-resistant Pseudomonas aeruginosa. Fuse K; Fujimura S; Kikuchi T; Gomi K; Iida Y; Nukiwa T; Watanabe A J Infect Chemother; 2013 Feb; 19(1):82-8. PubMed ID: 22865331 [TBL] [Abstract][Full Text] [Related]
7. The Pseudomonas aeruginosa oxidative stress regulator OxyR influences production of pyocyanin and rhamnolipids: protective role of pyocyanin. Vinckx T; Wei Q; Matthijs S; Cornelis P Microbiology (Reading); 2010 Mar; 156(Pt 3):678-686. PubMed ID: 19926657 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. García-Lara B; Saucedo-Mora MÁ; Roldán-Sánchez JA; Pérez-Eretza B; Ramasamy M; Lee J; Coria-Jimenez R; Tapia M; Varela-Guerrero V; García-Contreras R Lett Appl Microbiol; 2015 Sep; 61(3):299-305. PubMed ID: 26084709 [TBL] [Abstract][Full Text] [Related]
9. Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates. Sismaet HJ; Pinto AJ; Goluch ED Biosens Bioelectron; 2017 Nov; 97():65-69. PubMed ID: 28570940 [TBL] [Abstract][Full Text] [Related]
10. Pyocyanin production by Pseudomonas aeruginosa confers resistance to ionic silver. Muller M; Merrett ND Antimicrob Agents Chemother; 2014 Sep; 58(9):5492-9. PubMed ID: 25001302 [TBL] [Abstract][Full Text] [Related]
11. Virulence attributes in Brazilian clinical isolates of Pseudomonas aeruginosa. Silva LV; Galdino AC; Nunes AP; dos Santos KR; Moreira BM; Cacci LC; Sodré CL; Ziccardi M; Branquinha MH; Santos AL Int J Med Microbiol; 2014 Nov; 304(8):990-1000. PubMed ID: 25127423 [TBL] [Abstract][Full Text] [Related]
12. Pseudomonas aeruginosa Van Laar TA; Esani S; Birges TJ; Hazen B; Thomas JM; Rawat M mSphere; 2018 Apr; 3(2):. PubMed ID: 29669887 [No Abstract] [Full Text] [Related]
13. A purified and lyophilized Pseudomonas aeruginosa derived pyocyanin induces promising apoptotic and necrotic activities against MCF-7 human breast adenocarcinoma. Abdelaziz AA; Kamer AMA; Al-Monofy KB; Al-Madboly LA Microb Cell Fact; 2022 Dec; 21(1):262. PubMed ID: 36528623 [TBL] [Abstract][Full Text] [Related]
14. The Effect of Silver Nanoparticles on Pyocyanin Production of Najafi M; Nakhaei Moghaddam M; Yousefi E Avicenna J Med Biotechnol; 2021; 13(2):98-103. PubMed ID: 34012526 [TBL] [Abstract][Full Text] [Related]
15. A new strategy for the efficient production of pyocyanin, a versatile pigment, in Ozdal M 3 Biotech; 2019 Oct; 9(10):374. PubMed ID: 31588398 [No Abstract] [Full Text] [Related]
16. [Regulation of pyocyanin biosynthesis by transcriptional factor sigma38 in Pseudomonas aeruginosa PAO1]. Miao J; Chi X; Wang Y; Feng Z; Xue W; Huang R; Zhang H; Tian L; Zhang H; Zhai J; Ge Y Wei Sheng Wu Xue Bao; 2017 Feb; 57(2):229-39. PubMed ID: 29750486 [TBL] [Abstract][Full Text] [Related]
17. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932 [TBL] [Abstract][Full Text] [Related]
18. SpoT-Mediated Regulation and Amino Acid Prototrophy Are Essential for Pyocyanin Production During Parasitic Growth of Jagmann N; Philipp B Front Microbiol; 2018; 9():761. PubMed ID: 29720972 [TBL] [Abstract][Full Text] [Related]
19. Alkaline protease contributes to pyocyanin production in Pseudomonas aeruginosa. Iiyama K; Takahashi E; Lee JM; Mon H; Morishita M; Kusakabe T; Yasunaga-Aoki C FEMS Microbiol Lett; 2017 Apr; 364(7):. PubMed ID: 28333255 [TBL] [Abstract][Full Text] [Related]
20. The guanidinobutyrase GbuA is essential for the alkylquinolone-regulated pyocyanin production during parasitic growth of Pseudomonas aeruginosa in co-culture with Aeromonas hydrophila. Jagmann N; Bleicher V; Busche T; Kalinowski J; Philipp B Environ Microbiol; 2016 Oct; 18(10):3550-3564. PubMed ID: 27322205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]