These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33424526)

  • 1. A practical microfluidic pump enabled by acoustofluidics and 3D printing.
    Ozcelik A; Aslan Z
    Microfluid Nanofluidics; 2021; 25(1):5. PubMed ID: 33424526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Miniaturized Archimedean Screw Pump for High-Viscosity Fluid Pumping in Microfluidics.
    Gucluer S
    Micromachines (Basel); 2023 Jul; 14(7):. PubMed ID: 37512720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A simple acoustofluidic device for on-chip fabrication of PLGA nanoparticles.
    Ozcelik A; Aslan Z
    Biomicrofluidics; 2022 Jan; 16(1):014103. PubMed ID: 35154554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-Printed Microfluidic Devices for Enhanced Online Sampling and Direct Optical Measurements.
    Monia Kabandana GK; Jones CG; Sharifi SK; Chen C
    ACS Sens; 2020 Jul; 5(7):2044-2051. PubMed ID: 32363857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Printing Solutions for Microfluidic Chip-To-World Connections.
    van den Driesche S; Lucklum F; Bunge F; Vellekoop MJ
    Micromachines (Basel); 2018 Feb; 9(2):. PubMed ID: 30393347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Portable all-in-one automated microfluidic system (PAMICON) with 3D-printed chip using novel fluid control mechanism.
    Zhang Y; Tseng TM; Schlichtmann U
    Sci Rep; 2021 Sep; 11(1):19189. PubMed ID: 34584118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A frugal microfluidic pump.
    Fajrial AK; Vega A; Shakya G; Ding X
    Lab Chip; 2021 Dec; 21(24):4772-4778. PubMed ID: 34751689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The pumping lid: investigating multi-material 3D printing for equipment-free, programmable generation of positive and negative pressures for microfluidic applications.
    Begolo S; Zhukov DV; Selck DA; Li L; Ismagilov RF
    Lab Chip; 2014 Dec; 14(24):4616-28. PubMed ID: 25231706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.
    Alapan Y; Hasan MN; Shen R; Gurkan UA
    J Nanotechnol Eng Med; 2015 May; 6(2):. PubMed ID: 27512530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LCAT pump optimization for an integrated microfluidic droplet generator.
    Fang WF; Lee AP
    Microfluid Nanofluidics; 2015 May; 18(5-6):1265-1275. PubMed ID: 30057518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip stool liquefaction via acoustofluidics.
    Zhao S; He W; Ma Z; Liu P; Huang PH; Bachman H; Wang L; Yang S; Tian Z; Wang Z; Gu Y; Xie Z; Huang TJ
    Lab Chip; 2019 Mar; 19(6):941-947. PubMed ID: 30702741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Route for 3D Printing of Transparent PETg-Based Hybrid Biomicrofluidic Devices Promoting Cell Adhesion.
    Mehta V; Vilikkathala Sudhakaran S; Rath SN
    ACS Biomater Sci Eng; 2021 Aug; 7(8):3947-3963. PubMed ID: 34282888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monolithically 3D-Printed Microfluidics with Embedded µTesla Pump.
    Duan K; Orabi M; Warchock A; Al-Akraa Z; Ajami Z; Chun TH; Lo JF
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36837937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A smart and portable micropump for stable liquid delivery.
    Zhang X; Xia K; Ji A; Xiang N
    Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Negligible-cost microfluidic device fabrication using 3D-printed interconnecting channel scaffolds.
    Felton H; Hughes R; Diaz-Gaxiola A
    PLoS One; 2021; 16(2):e0245206. PubMed ID: 33534849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A passive and programmable 3D paper-based microfluidic pump for variable flow microfluidic applications.
    Shah SF; Jafry AT; Hussain G; Kazim AH; Ali M
    Biomicrofluidics; 2022 Dec; 16(6):064106. PubMed ID: 36536792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fused filament fabrication 3D printed polylactic acid electroosmotic pumps.
    Wu L; Beirne S; Cabot JM; Paull B; Wallace GG; Innis PC
    Lab Chip; 2021 Sep; 21(17):3338-3351. PubMed ID: 34231640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system.
    Riester O; Laufer S; Deigner HP
    J Nanobiotechnology; 2022 Dec; 20(1):540. PubMed ID: 36575530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.