These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 33424738)

  • 1. Rupture Risk Assessment for Cerebral Aneurysm Using Interpretable Machine Learning on Multidimensional Data.
    Ou C; Liu J; Qian Y; Chong W; Zhang X; Liu W; Su H; Zhang N; Zhang J; Duan CZ; He X
    Front Neurol; 2020; 11():570181. PubMed ID: 33424738
    [No Abstract]   [Full Text] [Related]  

  • 2. Interpretable machine learning model to predict rupture of small intracranial aneurysms and facilitate clinical decision.
    Xiong W; Chen T; Li J; Xiang L; Zhang C; Xiang L; Li Y; Chu D; Wu Y; Jie Q; Qiu R; Xu Z; Zou J; Fan H; Zhao Z
    Neurol Sci; 2022 Nov; 43(11):6371-6379. PubMed ID: 35997829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can we explain machine learning-based prediction for rupture status assessments of intracranial aneurysms?
    Mu N; Rezaeitaleshmahalleh M; Lyu Z; Wang M; Tang J; Strother CM; Gemmete JJ; Pandey AS; Jiang J
    Biomed Phys Eng Express; 2023 Mar; 9(3):. PubMed ID: 36626819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction Model of Osteonecrosis of the Femoral Head After Femoral Neck Fracture: Machine Learning-Based Development and Validation Study.
    Wang H; Wu W; Han C; Zheng J; Cai X; Chang S; Shi J; Xu N; Ai Z
    JMIR Med Inform; 2021 Nov; 9(11):e30079. PubMed ID: 34806984
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study.
    Chen G; Lu M; Shi Z; Xia S; Ren Y; Liu Z; Liu X; Li Z; Mao L; Li XL; Zhang B; Zhang LJ; Lu GM
    Eur Radiol; 2020 Sep; 30(9):5170-5182. PubMed ID: 32350658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurately predicting the risk of unfavorable outcomes after endovascular coil therapy in patients with aneurysmal subarachnoid hemorrhage: an interpretable machine learning model.
    Zhou Z; Dai A; Yan Y; Jin Y; Zou D; Xu X; Xiang L; Guo L; Xiang L; Jiang F; Zhao Z; Zou J
    Neurol Sci; 2024 Feb; 45(2):679-691. PubMed ID: 37624541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study.
    Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J
    J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretable Machine Learning for Early Prediction of Prognosis in Sepsis: A Discovery and Validation Study.
    Hu C; Li L; Huang W; Wu T; Xu Q; Liu J; Hu B
    Infect Dis Ther; 2022 Jun; 11(3):1117-1132. PubMed ID: 35399146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explainable machine learning model to predict refeeding hypophosphatemia.
    Choi TY; Chang MY; Heo S; Jang JY
    Clin Nutr ESPEN; 2021 Oct; 45():213-219. PubMed ID: 34620320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Outcome prediction of intracranial aneurysm treatment by flow diverters using machine learning.
    Paliwal N; Jaiswal P; Tutino VM; Shallwani H; Davies JM; Siddiqui AH; Rai R; Meng H
    Neurosurg Focus; 2018 Nov; 45(5):E7. PubMed ID: 30453461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of prediction models for one-year brain tumour survival using machine learning: a comparison of accuracy and interpretability.
    Charlton CE; Poon MTC; Brennan PM; Fleuriot JD
    Comput Methods Programs Biomed; 2023 May; 233():107482. PubMed ID: 36947980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Models can Detect Aneurysm Rupture and Identify Clinical Features Associated with Rupture.
    Silva MA; Patel J; Kavouridis V; Gallerani T; Beers A; Chang K; Hoebel KV; Brown J; See AP; Gormley WB; Aziz-Sultan MA; Kalpathy-Cramer J; Arnaout O; Patel NJ
    World Neurosurg; 2019 Nov; 131():e46-e51. PubMed ID: 31295616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning prediction model for the rupture status of middle cerebral artery aneurysm in patients with hypertension: a Chinese multicenter study.
    Lin M; Xia N; Lin R; Xu L; Chen Y; Zhou J; Lin B; Zheng K; Wang H; Jia X; Liu J; Zhu D; Chen C; Yang Y; Su N
    Quant Imaging Med Surg; 2023 Aug; 13(8):4867-4878. PubMed ID: 37581038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of statistical learning approaches for cerebral aneurysm rupture assessment.
    Detmer FJ; Lückehe D; Mut F; Slawski M; Hirsch S; Bijlenga P; von Voigt G; Cebral JR
    Int J Comput Assist Radiol Surg; 2020 Jan; 15(1):141-150. PubMed ID: 31485987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretable prediction of mortality in liver transplant recipients based on machine learning.
    Zhang X; Gavaldà R; Baixeries J
    Comput Biol Med; 2022 Dec; 151(Pt A):106188. PubMed ID: 36306583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Early detection of squamous cell carcinoma of the oral tongue using multidimensional plasma protein analysis and interpretable machine learning.
    Gu X; Salehi A; Wang L; Coates PJ; Sgaramella N; Nylander K
    J Oral Pathol Med; 2023 Aug; 52(7):637-643. PubMed ID: 37428440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Machine-Learning Approach for Dynamic Prediction of Sepsis-Induced Coagulopathy in Critically Ill Patients With Sepsis.
    Zhao QY; Liu LP; Luo JC; Luo YW; Wang H; Zhang YJ; Gui R; Tu GW; Luo Z
    Front Med (Lausanne); 2020; 7():637434. PubMed ID: 33553224
    [No Abstract]   [Full Text] [Related]  

  • 18. [Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients].
    Tang CQ; Li JQ; Xu DY; Liu XB; Hou WJ; Lyu KY; Xiao SC; Xia ZF
    Zhonghua Shao Shang Za Zhi; 2018 Jun; 34(6):343-348. PubMed ID: 29961290
    [No Abstract]   [Full Text] [Related]  

  • 19. Prediction of rupture risk in anterior communicating artery aneurysms with a feed-forward artificial neural network.
    Liu J; Chen Y; Lan L; Lin B; Chen W; Wang M; Li R; Yang Y; Zhao B; Hu Z; Duan Y
    Eur Radiol; 2018 Aug; 28(8):3268-3275. PubMed ID: 29476219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Machine Learning Model Based on Health Records for Predicting Recurrence After Microwave Ablation of Hepatocellular Carcinoma.
    An C; Yang H; Yu X; Han ZY; Cheng Z; Liu F; Dou J; Li B; Li Y; Li Y; Yu J; Liang P
    J Hepatocell Carcinoma; 2022; 9():671-684. PubMed ID: 35923613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.