These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 33424738)

  • 21. Development and assessment of machine learning models for predicting recurrence risk after endovascular treatment in patients with intracranial aneurysms.
    Lin S; Zou Y; Hu J; Xiang L; Guo L; Lin X; Zou D; Gao X; Liang H; Zou J; Zhao Z; Dai X
    Neurosurg Rev; 2022 Apr; 45(2):1521-1531. PubMed ID: 34657975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine Learning Application for Rupture Risk Assessment in Small-Sized Intracranial Aneurysm.
    Kim HC; Rhim JK; Ahn JH; Park JJ; Moon JU; Hong EP; Kim MR; Kim SG; Lee SH; Jeong JH; Choi SW; Jeon JP
    J Clin Med; 2019 May; 8(5):. PubMed ID: 31096607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shared and Distinct Rupture Discriminants of Small and Large Intracranial Aneurysms.
    Varble N; Tutino VM; Yu J; Sonig A; Siddiqui AH; Davies JM; Meng H
    Stroke; 2018 Apr; 49(4):856-864. PubMed ID: 29535267
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development and Interpretation of Multiple Machine Learning Models for Predicting Postoperative Delayed Remission of Acromegaly Patients During Long-Term Follow-Up.
    Dai C; Fan Y; Li Y; Bao X; Li Y; Su M; Yao Y; Deng K; Xing B; Feng F; Feng M; Wang R
    Front Endocrinol (Lausanne); 2020; 11():643. PubMed ID: 33042013
    [No Abstract]   [Full Text] [Related]  

  • 25. Prediction of Aneurysm Stability Using a Machine Learning Model Based on PyRadiomics-Derived Morphological Features.
    Liu Q; Jiang P; Jiang Y; Ge H; Li S; Jin H; Li Y
    Stroke; 2019 Sep; 50(9):2314-2321. PubMed ID: 31288671
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracranial Aneurysm Rupture Risk Estimation With Multidimensional Feature Fusion.
    An X; He J; Di Y; Wang M; Luo B; Huang Y; Ming D
    Front Neurosci; 2022; 16():813056. PubMed ID: 35250455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extending statistical learning for aneurysm rupture assessment to Finnish and Japanese populations using morphology, hemodynamics, and patient characteristics.
    Detmer FJ; Hadad S; Chung BJ; Mut F; Slawski M; Juchler N; Kurtcuoglu V; Hirsch S; Bijlenga P; Uchiyama Y; Fujimura S; Yamamoto M; Murayama Y; Takao H; Koivisto T; Frösen J; Cebral JR
    Neurosurg Focus; 2019 Jul; 47(1):E16. PubMed ID: 31261120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interpretable machine learning for early neurological deterioration prediction in atrial fibrillation-related stroke.
    Kim SH; Jeon ET; Yu S; Oh K; Kim CK; Song TJ; Kim YJ; Heo SH; Park KY; Kim JM; Park JH; Choi JC; Park MS; Kim JT; Choi KH; Hwang YH; Kim BJ; Chung JW; Bang OY; Kim G; Seo WK; Jung JM
    Sci Rep; 2021 Oct; 11(1):20610. PubMed ID: 34663874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of Acute Kidney Injury After Cardiac Surgery Using Interpretable Machine Learning.
    Ejmalian A; Aghaei A; Nabavi S; Abedzadeh Darabad M; Tajbakhsh A; Abin AA; Ebrahimi Moghaddam M; Dabbagh A; Jahangirifard A; Memary E; Sayyadi S
    Anesth Pain Med; 2022 Aug; 12(4):e127140. PubMed ID: 36937087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphology of Ruptured and Unruptured Intracranial Aneurysms.
    Abboud T; Rustom J; Bester M; Czorlich P; Vittorazzi E; Pinnschmidt HO; Westphal M; Regelsberger J
    World Neurosurg; 2017 Mar; 99():610-617. PubMed ID: 28017741
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An interpretable machine learning approach for predicting 30-day readmission after stroke.
    Lv J; Zhang M; Fu Y; Chen M; Chen B; Xu Z; Yan X; Hu S; Zhao N
    Int J Med Inform; 2023 Jun; 174():105050. PubMed ID: 36965404
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interpretable machine learning with tree-based shapley additive explanations: Application to metabolomics datasets for binary classification.
    Bifarin OO
    PLoS One; 2023; 18(5):e0284315. PubMed ID: 37141218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine learning-based predictions and analyses of the creep rupture life of the Ni-based single crystal superalloy.
    Zou F; Liu P; Chen Y; Zhao Y
    Sci Rep; 2024 Sep; 14(1):20716. PubMed ID: 39237729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting post-stroke pneumonia using deep neural network approaches.
    Ge Y; Wang Q; Wang L; Wu H; Peng C; Wang J; Xu Y; Xiong G; Zhang Y; Yi Y
    Int J Med Inform; 2019 Dec; 132():103986. PubMed ID: 31629312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of delayed cerebral ischemia after cerebral aneurysm rupture using explainable machine learning approach.
    Taghavi RM; Zhu G; Wintermark M; Kuraitis GM; Sussman ES; Pulli B; Biniam B; Ostmeier S; Steinberg GK; Heit JJ
    Interv Neuroradiol; 2023 Apr; ():15910199231170411. PubMed ID: 37070145
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and validation of interpretable machine learning models for inpatient fall events and electronic medical record integration.
    Shim S; Yu JY; Jekal S; Song YJ; Moon KT; Lee JH; Yeom KM; Park SH; Cho IS; Song MR; Heo S; Hong JH
    Clin Exp Emerg Med; 2022 Dec; 9(4):345-353. PubMed ID: 36128798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine Learning Algorithms for Rupture Risk Assessment of Intracranial Aneurysms: A Diagnostic Meta-Analysis.
    Shu Z; Chen S; Wang W; Qiu Y; Yu Y; Lyu N; Wang C
    World Neurosurg; 2022 Sep; 165():e137-e147. PubMed ID: 35690311
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction and analysis of periprocedural complications associated with endovascular treatment for unruptured intracranial aneurysms using machine learning.
    Tian Z; Li W; Feng X; Sun K; Duan C
    Front Neurol; 2022; 13():1027557. PubMed ID: 36313499
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early Detection of Septic Shock Onset Using Interpretable Machine Learners.
    Misra D; Avula V; Wolk DM; Farag HA; Li J; Mehta YB; Sandhu R; Karunakaran B; Kethireddy S; Zand R; Abedi V
    J Clin Med; 2021 Jan; 10(2):. PubMed ID: 33467539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene expression profile of blood cells for the prediction of delayed cerebral ischemia after intracranial aneurysm rupture: a pilot study in humans.
    Baumann A; Devaux Y; Audibert G; Zhang L; Bracard S; Colnat-Coulbois S; Klein O; Zannad F; Charpentier C; Longrois D; Mertes PM
    Cerebrovasc Dis; 2013; 36(3):236-42. PubMed ID: 24135536
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.