These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 33424814)
1. MogR Is a Ubiquitous Transcriptional Repressor Affecting Motility, Biofilm Formation and Virulence in Smith V; Josefsen M; Lindbäck T; Hegna IK; Finke S; Tourasse NJ; Nielsen-LeRoux C; Økstad OA; Fagerlund A Front Microbiol; 2020; 11():610650. PubMed ID: 33424814 [TBL] [Abstract][Full Text] [Related]
2. The MogR transcriptional repressor regulates nonhierarchal expression of flagellar motility genes and virulence in Listeria monocytogenes. Shen A; Higgins DE PLoS Pathog; 2006 Apr; 2(4):e30. PubMed ID: 16617375 [TBL] [Abstract][Full Text] [Related]
3. Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Gründling A; Burrack LS; Bouwer HG; Higgins DE Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12318-23. PubMed ID: 15302931 [TBL] [Abstract][Full Text] [Related]
4. A protein thermometer controls temperature-dependent transcription of flagellar motility genes in Listeria monocytogenes. Kamp HD; Higgins DE PLoS Pathog; 2011 Aug; 7(8):e1002153. PubMed ID: 21829361 [TBL] [Abstract][Full Text] [Related]
5. PlcR is a pleiotropic regulator of extracellular virulence factor gene expression in Bacillus thuringiensis. Agaisse H; Gominet M; Okstad OA; Kolstø AB; Lereclus D Mol Microbiol; 1999 Jun; 32(5):1043-53. PubMed ID: 10361306 [TBL] [Abstract][Full Text] [Related]
6. Transcriptional and post-transcriptional regulation of the GmaR antirepressor governs temperature-dependent control of flagellar motility in Listeria monocytogenes. Kamp HD; Higgins DE Mol Microbiol; 2009 Oct; 74(2):421-35. PubMed ID: 19796338 [TBL] [Abstract][Full Text] [Related]
7. CdgL is a degenerate nucleotide cyclase domain protein affecting flagellin synthesis and motility in Bacillus thuringiensis. Smith V; Nilssen IKB; Hegna IK; Dalhus B; Fagerlund A; Økstad OA Res Microbiol; 2021; 172(4-5):103850. PubMed ID: 34082027 [TBL] [Abstract][Full Text] [Related]
8. A bifunctional O-GlcNAc transferase governs flagellar motility through anti-repression. Shen A; Kamp HD; Gründling A; Higgins DE Genes Dev; 2006 Dec; 20(23):3283-95. PubMed ID: 17158746 [TBL] [Abstract][Full Text] [Related]
9. Listeria monocytogenes DNA Glycosylase AdlP Affects Flagellar Motility, Biofilm Formation, Virulence, and Stress Responses. Zhang T; Bae D; Wang C Appl Environ Microbiol; 2016 Sep; 82(17):5144-52. PubMed ID: 27316964 [TBL] [Abstract][Full Text] [Related]
10. Structural basis of flagellar motility regulation by the MogR repressor and the GmaR antirepressor in Listeria monocytogenes. Cho SY; Na HW; Oh HB; Kwak YM; Song WS; Park SC; Jeon WJ; Cho H; Oh BC; Park J; Kang SG; Lee GS; Yoon SI Nucleic Acids Res; 2022 Oct; 50(19):11315-11330. PubMed ID: 36283692 [TBL] [Abstract][Full Text] [Related]
11. Susceptibility of Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides and Bacillus thuringiensis to 24 antimicrobials using Sensititre automated microbroth dilution and Etest agar gradient diffusion methods. Luna VA; King DS; Gulledge J; Cannons AC; Amuso PT; Cattani J J Antimicrob Chemother; 2007 Sep; 60(3):555-67. PubMed ID: 17586563 [TBL] [Abstract][Full Text] [Related]
12. FlhA influences Bacillus thuringiensis PlcR-regulated gene transcription, protein production, and virulence. Bouillaut L; Ramarao N; Buisson C; Gilois N; Gohar M; Lereclus D; Nielsen-Leroux C Appl Environ Microbiol; 2005 Dec; 71(12):8903-10. PubMed ID: 16332888 [TBL] [Abstract][Full Text] [Related]
13. FlhF, a signal recognition particle-like GTPase, is involved in the regulation of flagellar arrangement, motility behaviour and protein secretion in Bacillus cereus. Salvetti S; Ghelardi E; Celandroni F; Ceragioli M; Giannessi F; Senesi S Microbiology (Reading); 2007 Aug; 153(Pt 8):2541-2552. PubMed ID: 17660418 [TBL] [Abstract][Full Text] [Related]
14. Development of real-time PCR assays for detection and quantification of Bacillus cereus group species: differentiation of B. weihenstephanensis and rhizoid B. pseudomycoides isolates from milk. Oliwa-Stasiak K; Kolaj-Robin O; Adley CC Appl Environ Microbiol; 2011 Jan; 77(1):80-8. PubMed ID: 21057027 [TBL] [Abstract][Full Text] [Related]
15. The autolytic phenotype of the Bacillus cereus group. Raddadi N; Cherif A; Mora D; Brusetti L; Borin S; Boudabous A; Daffonchio D J Appl Microbiol; 2005; 99(5):1070-81. PubMed ID: 16238737 [TBL] [Abstract][Full Text] [Related]
16. Cyclic diguanylate regulation of Bacillus cereus group biofilm formation. Fagerlund A; Smith V; Røhr ÅK; Lindbäck T; Parmer MP; Andersson KK; Reubsaet L; Økstad OA Mol Microbiol; 2016 Aug; 101(3):471-94. PubMed ID: 27116468 [TBL] [Abstract][Full Text] [Related]
17. Bacillus weihenstephanensis characteristics are present in Bacillus cereus and Bacillus mycoides strains. Soufiane B; Côté JC FEMS Microbiol Lett; 2013 Apr; 341(2):127-37. PubMed ID: 23413955 [TBL] [Abstract][Full Text] [Related]
18. [Detection of some toxin genes related to pathogenicity in Bacillus cereus group strains]. Hu XM; Cai YJ; Zhou GP; Yuan ZM Wei Sheng Wu Xue Bao; 2007 Jun; 47(3):392-5. PubMed ID: 17672293 [TBL] [Abstract][Full Text] [Related]
19. Comparative transcriptional profiling of Bacillus cereus sensu lato strains during growth in CO2-bicarbonate and aerobic atmospheres. Passalacqua KD; Varadarajan A; Byrd B; Bergman NH PLoS One; 2009; 4(3):e4904. PubMed ID: 19295911 [TBL] [Abstract][Full Text] [Related]
20. Novel motB as a potential predictive tool for identification of B. cereus, B. thuringiensis and differentiation from other Bacillus species by triplex real-time PCR. Chelliah R; Wei S; Park BJ; Kim SH; Park DS; Kim SH; Hwan KS; Oh DH Microb Pathog; 2017 Oct; 111():22-27. PubMed ID: 28778821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]