These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33425005)

  • 1. Simulation Analysis of the Aerodynamic Performance of a Bionic Aircraft with Foldable Beetle Wings in Gliding Flight.
    Wang C; Ning Y; Wang X; Zhang J; Wang L
    Appl Bionics Biomech; 2020; 2020():8843360. PubMed ID: 33425005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and Mechanical Analysis of Bionic Foldable Beetle Wings.
    Wang C; Wang C; Ning Y; Chen L; Wang X
    Appl Bionics Biomech; 2018; 2018():1308465. PubMed ID: 30159024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design optimization and experimental study of a novel mechanism for a hover-able bionic flapping-wing micro air vehicle.
    Deng H; Xiao S; Huang B; Yang L; Xiang X; Ding X
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33075759
    [No Abstract]   [Full Text] [Related]  

  • 4. Efficiency of lift production in flapping and gliding flight of swifts.
    Henningsson P; Hedenström A; Bomphrey RJ
    PLoS One; 2014; 9(2):e90170. PubMed ID: 24587260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dwarf Kingfisher-Inspired Bionic Flapping Wing and Its Aerodynamic Performance at Lowest Flight Speed.
    Abas MFB; Singh B; Ahmad KA; Ng EYK; Khan T; Sebaey TA
    Biomimetics (Basel); 2022 Aug; 7(3):. PubMed ID: 36134928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematics of flap-bounding flight in the zebra finch over a wide range of speeds.
    Tobalske BW; Peacock WL; Dial KP
    J Exp Biol; 1999 Jul; 202 (Pt 13)():1725-39. PubMed ID: 10359676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A wing-assisted running robot and implications for avian flight evolution.
    Peterson K; Birkmeyer P; Dudley R; Fearing RS
    Bioinspir Biomim; 2011 Dec; 6(4):046008. PubMed ID: 22004831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on Deployable Wings for MAVs Bioinspired by the Hind Wings of the Beetle
    Sun J; Wang W; Li P; Zhang Z
    Biomimetics (Basel); 2024 May; 9(6):. PubMed ID: 38921193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerodynamic consequences of wing morphing during emulated take-off and gliding in birds.
    Klaassen van Oorschot B; Mistick EA; Tobalske BW
    J Exp Biol; 2016 Oct; 219(Pt 19):3146-3154. PubMed ID: 27473437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of wing twist in slow-speed flapping flight of birds: trading brute force against efficiency.
    Thielicke W; Stamhuis EJ
    Bioinspir Biomim; 2018 Aug; 13(5):056015. PubMed ID: 30043756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between 3-D kinematics and gliding performance in the southern flying squirrel, Glaucomys volans.
    Bishop KL
    J Exp Biol; 2006 Feb; 209(Pt 4):689-701. PubMed ID: 16449563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system.
    Truong QT; Nguyen QV; Truong VT; Park HC; Byun DY; Goo NS
    Bioinspir Biomim; 2011 Sep; 6(3):036008. PubMed ID: 21865627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces.
    Lees JJ; Dimitriadis G; Nudds RL
    PeerJ; 2016; 4():e2495. PubMed ID: 27781155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspiration of the vein structure of dragonfly wings on its flight characteristics.
    Liu C; Du R; Li F; Sun J
    Microsc Res Tech; 2022 Mar; 85(3):829-839. PubMed ID: 34581475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An aeroelastic instability provides a possible basis for the transition from gliding to flapping flight.
    Curet OM; Swartz SM; Breuer KS
    J R Soc Interface; 2013 Mar; 10(80):20120940. PubMed ID: 23303221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings.
    Fu J; Liu X; Shyy W; Qiu H
    Bioinspir Biomim; 2018 Mar; 13(3):036001. PubMed ID: 29372888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on the aerodynamic characteristics of dragonfly leading edge.
    Hu Y; Zhu C; Liu Q; Zhu D; Xue J; Li Q; Zhou X
    Microsc Res Tech; 2025 Jan; 88(1):181-201. PubMed ID: 39257069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing the kinematics and longitudinal aerodynamics of a four-wing bionic aircraft.
    Wang L; Shi Z; Geng X; Tong S; Chen Z
    Bioinspir Biomim; 2024 Feb; 19(2):. PubMed ID: 38306675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the Mechanical Performance of Bionic Wings Based on the Flapping Kinematics of Beetle Hindwings.
    Liu C; Shen T; Shen H; Ling M; Chen G; Lu B; Chen F; Wang Z
    Biomimetics (Basel); 2024 Jun; 9(6):. PubMed ID: 38921223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal pitching axis location of flapping wings for efficient hovering flight.
    Wang Q; Goosen JFL; van Keulen F
    Bioinspir Biomim; 2017 Sep; 12(5):056001. PubMed ID: 28632144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.